Skip to content

Commit ca4637d

Browse files
authored
Create Linear Regression_single feature.py
1 parent bb3b5c0 commit ca4637d

File tree

1 file changed

+76
-0
lines changed

1 file changed

+76
-0
lines changed

Linear Regression_single feature.py

Lines changed: 76 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,76 @@
1+
#Importing the libraries
2+
import numpy as np
3+
import matplotlib.pyplot as plt
4+
import pandas as pd
5+
import numpy as np
6+
import matplotlib.pyplot as plt
7+
import pandas as pd
8+
9+
dataset=pd.read_csv("Enter the path of california dataset")
10+
11+
print(dataset)
12+
x8=dataset['median_income']
13+
y=dataset['median_house_value']
14+
print(x8)
15+
print(y)#median_house_value
16+
print(x8.shape)
17+
print(y.shape)
18+
x8=np.reshape(x8.to_numpy(),(-1,1))
19+
y=np.reshape(y.to_numpy(),(-1,1))
20+
print(x8.shape)
21+
print(y.shape)
22+
23+
plt.scatter(x8,y,color='green')
24+
plt.title("Median house value vs Median Income")
25+
plt.xlabel("Median Income->")
26+
plt.ylabel("Median house value->")
27+
plt.show()
28+
29+
from sklearn.linear_model import LinearRegression
30+
31+
regressor_1= LinearRegression()
32+
regressor_1.fit(x8,y)
33+
34+
plt.scatter(x8,y,color='green')
35+
plt.plot(x8,regressor_1.predict(x8),color='blue')
36+
plt.title("Median house value vs Median Income")
37+
plt.xlabel("Median Income->")
38+
plt.ylabel("Median house value->")
39+
plt.show()
40+
41+
from sklearn.model_selection import train_test_split
42+
43+
x_train, x_test, y_train, y_test = train_test_split(x8, y, test_size = 1/3, random_state = 0)
44+
45+
plt.scatter(x_train, y_train, color='green')
46+
plt.scatter(x_test, y_test, color='blue')
47+
plt.title("Median house value vs Median Income")
48+
plt.xlabel("Median Income->")
49+
plt.ylabel("Median house value->")
50+
plt.show()
51+
52+
regressor_2 = LinearRegression()
53+
regressor_2.fit(x_train, y_train)
54+
y_pred=regressor_2.predict(x_test)
55+
56+
plt.scatter(x_test, y_test, color='green')
57+
plt.scatter(x_test, y_pred, color='blue')
58+
plt.plot(x_test, y_pred, color='black')
59+
plt.title("Median house value vs Median Income")
60+
plt.xlabel("Median Income->")
61+
plt.ylabel("Median house value->")
62+
plt.show()
63+
64+
from sklearn.metrics import mean_squared_error
65+
from sklearn.metrics import mean_absolute_error
66+
67+
print('MSE',mean_squared_error(y,regressor_1.predict(x8)))
68+
print('MAE',mean_absolute_error(y,regressor_1.predict(x8)))
69+
print('Accuracy',regressor_2.score(x_test,y_test)*100)
70+
71+
72+
73+
74+
75+
76+

0 commit comments

Comments
 (0)