|
| 1 | +#Importing the libraries |
| 2 | +import numpy as np |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import pandas as pd |
| 5 | +import numpy as np |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +import pandas as pd |
| 8 | + |
| 9 | +dataset=pd.read_csv("Enter the path of california dataset") |
| 10 | + |
| 11 | +print(dataset) |
| 12 | +x8=dataset['median_income'] |
| 13 | +y=dataset['median_house_value'] |
| 14 | +print(x8) |
| 15 | +print(y)#median_house_value |
| 16 | +print(x8.shape) |
| 17 | +print(y.shape) |
| 18 | +x8=np.reshape(x8.to_numpy(),(-1,1)) |
| 19 | +y=np.reshape(y.to_numpy(),(-1,1)) |
| 20 | +print(x8.shape) |
| 21 | +print(y.shape) |
| 22 | + |
| 23 | +plt.scatter(x8,y,color='green') |
| 24 | +plt.title("Median house value vs Median Income") |
| 25 | +plt.xlabel("Median Income->") |
| 26 | +plt.ylabel("Median house value->") |
| 27 | +plt.show() |
| 28 | + |
| 29 | +from sklearn.linear_model import LinearRegression |
| 30 | + |
| 31 | +regressor_1= LinearRegression() |
| 32 | +regressor_1.fit(x8,y) |
| 33 | + |
| 34 | +plt.scatter(x8,y,color='green') |
| 35 | +plt.plot(x8,regressor_1.predict(x8),color='blue') |
| 36 | +plt.title("Median house value vs Median Income") |
| 37 | +plt.xlabel("Median Income->") |
| 38 | +plt.ylabel("Median house value->") |
| 39 | +plt.show() |
| 40 | + |
| 41 | +from sklearn.model_selection import train_test_split |
| 42 | + |
| 43 | +x_train, x_test, y_train, y_test = train_test_split(x8, y, test_size = 1/3, random_state = 0) |
| 44 | + |
| 45 | +plt.scatter(x_train, y_train, color='green') |
| 46 | +plt.scatter(x_test, y_test, color='blue') |
| 47 | +plt.title("Median house value vs Median Income") |
| 48 | +plt.xlabel("Median Income->") |
| 49 | +plt.ylabel("Median house value->") |
| 50 | +plt.show() |
| 51 | + |
| 52 | +regressor_2 = LinearRegression() |
| 53 | +regressor_2.fit(x_train, y_train) |
| 54 | +y_pred=regressor_2.predict(x_test) |
| 55 | + |
| 56 | +plt.scatter(x_test, y_test, color='green') |
| 57 | +plt.scatter(x_test, y_pred, color='blue') |
| 58 | +plt.plot(x_test, y_pred, color='black') |
| 59 | +plt.title("Median house value vs Median Income") |
| 60 | +plt.xlabel("Median Income->") |
| 61 | +plt.ylabel("Median house value->") |
| 62 | +plt.show() |
| 63 | + |
| 64 | +from sklearn.metrics import mean_squared_error |
| 65 | +from sklearn.metrics import mean_absolute_error |
| 66 | + |
| 67 | +print('MSE',mean_squared_error(y,regressor_1.predict(x8))) |
| 68 | +print('MAE',mean_absolute_error(y,regressor_1.predict(x8))) |
| 69 | +print('Accuracy',regressor_2.score(x_test,y_test)*100) |
| 70 | + |
| 71 | + |
| 72 | + |
| 73 | + |
| 74 | + |
| 75 | + |
| 76 | + |
0 commit comments