-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcut_test_dataset.py
59 lines (40 loc) · 1.86 KB
/
cut_test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import cv2, os
from pytorch_toolbelt.inference.tiles import ImageSlicer
from pytorch_toolbelt.utils.fs import id_from_fname, read_image_as_is
import pandas as pd
from tqdm import tqdm
from inria.dataset import TEST_LOCATIONS
def split_image(image_fname, output_dir, tile_size, tile_step, image_margin):
os.makedirs(output_dir, exist_ok=True)
image = read_image_as_is(image_fname)
image_id = id_from_fname(image_fname)
slicer = ImageSlicer(image.shape, tile_size, tile_step, image_margin)
tiles = slicer.split(image)
fnames = []
for i, tile in enumerate(tiles):
output_fname = os.path.join(output_dir, f"{image_id}_tile_{i}.png")
cv2.imwrite(output_fname, tile)
fnames.append(output_fname)
return fnames
def cut_dataset_in_patches(data_dir, tile_size, tile_step, image_margin):
locations = TEST_LOCATIONS
train_data = []
# For validation, we remove the first five images of every location (e.g., austin{1-5}.tif, chicago{1-5}.tif) from the training set.
# That is suggested validation strategy by competition host
for loc in locations:
for i in range(1, 37):
train_data.append(f"{loc}{i}")
train_imgs = [os.path.join(data_dir, "test", "images", f"{fname}.tif") for fname in train_data]
images_dir = os.path.join(data_dir, "test_tiles", "images")
for train_img in tqdm(train_imgs, total=len(train_imgs), desc="test_imgs"):
split_image(train_img, images_dir, tile_size, tile_step, image_margin)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-dd", "--data-dir", type=str, required=True, help="Data directory for INRIA sattelite dataset"
)
args = parser.parse_args()
cut_dataset_in_patches(args.data_dir, tile_size=(768, 768), tile_step=(512, 512), image_margin=0)
if __name__ == "__main__":
main()