diff --git a/README.md b/README.md index e2b01da..9b689ba 100644 --- a/README.md +++ b/README.md @@ -18,7 +18,7 @@ This is the TorchDrug implementation of [ULTRA], a foundation model for KG reaso ## Installation ## You may install the dependencies via either conda or pip. -Ultra (TorchDrug) is compatible with Python 3.7/3.8/3.9, PyTorch 1.13 and PyG 2.3 (CUDA 11.7 or later wnen running on GPUs). If you are on a Mac, you may omit the CUDA toolkit requirements (tested with PyTorch 2.0 with the relevant `torch-scatter` version on Mac M2). +Ultra (TorchDrug) is compatible with Python 3.7/3.8/3.9, PyTorch 1.13 and PyG 2.3 (CUDA 11.7 or later when running on GPUs). If you are on a Mac, you may omit the CUDA toolkit requirements (tested with PyTorch 2.0 with the relevant `torch-scatter` version on Mac M2). ### From Conda ### @@ -143,7 +143,7 @@ To run ULTRA with multiple GPUs, use the following commands (eg, 4 GPUs per node python -m torch.distributed.launch --nproc_per_node=4 script/run_full.py -c config/transductive/pretrain.yaml --gpus [0,1,2,3] ``` -Multi-node setup might work as well(not tested): +Multi-node setup might work as well (not tested): ```bash python -m torch.distributed.launch --nnodes=4 --nproc_per_node=4 script/pretrain.py -c config/transductive/pretrain.yaml --gpus [0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3] ``` diff --git a/ultra/util.py b/ultra/util.py index 1cb50be..6a30762 100644 --- a/ultra/util.py +++ b/ultra/util.py @@ -266,7 +266,7 @@ def safe_load(solver, checkpoint, fix_reasoner=False, drop_optimizer=True): if not fix_reasoner: solver.optimizer.load_state_dict(state["optimizer"]) except: - print("\n\n\n\nwarninig: loaded state dict has a different number of parameter groups\n\n\n\n") + print("\n\n\n\nwarning: loaded state dict has a different number of parameter groups\n\n\n\n") for state in solver.optimizer.state.values(): for k, v in state.items(): @@ -322,4 +322,4 @@ def clean_save(solver, checkpoint): } torch.save(state, checkpoint) - comm.synchronize() \ No newline at end of file + comm.synchronize()