Skip to content

Commit 9f1e2ef

Browse files
maziyarpanahijsl-modelsNaveen-004ahmedlone127prabod
authored
Models hub (#13807)
* Add model 2023-04-13-CyberbullyingDetection_ClassifierDL_tfhub_en (#13757) Co-authored-by: Naveen-004 <[email protected]> * 2023-04-20-distilbert_base_uncased_mnli_en (#13761) * Add model 2023-04-20-distilbert_base_uncased_mnli_en * Add model 2023-04-20-distilbert_base_turkish_cased_allnli_tr * Add model 2023-04-20-distilbert_base_turkish_cased_snli_tr * Add model 2023-04-20-distilbert_base_turkish_cased_multinli_tr * Update and rename 2023-04-20-distilbert_base_turkish_cased_allnli_tr.md to 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_allnli_tr.md * Update and rename 2023-04-20-distilbert_base_turkish_cased_multinli_tr.md to 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_multinli_tr.md * Update and rename 2023-04-20-distilbert_base_turkish_cased_snli_tr.md to 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_snli_tr.md * Update and rename 2023-04-20-distilbert_base_uncased_mnli_en.md to distilbert_base_zero_shot_classifier_turkish_cased_snli * Rename distilbert_base_zero_shot_classifier_turkish_cased_snli to distilbert_base_zero_shot_classifier_turkish_cased_snli_en.md * Update 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_snli_tr.md * Update 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_multinli_tr.md * Update 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_allnli_tr.md --------- Co-authored-by: ahmedlone127 <[email protected]> * 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_multinli_tr (#13763) * Add model 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_multinli_tr * Add model 2023-04-20-distilbert_base_zero_shot_classifier_uncased_mnli_en * Add model 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_snli_tr * Add model 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_allnli_tr * Update 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_multinli_tr.md * Update 2023-04-20-distilbert_base_zero_shot_classifier_turkish_cased_snli_tr.md --------- Co-authored-by: ahmedlone127 <[email protected]> * 2023-05-04-roberta_base_zero_shot_classifier_nli_en (#13781) * Add model 2023-05-04-roberta_base_zero_shot_classifier_nli_en * Fix Spark version to 3.0 --------- Co-authored-by: ahmedlone127 <[email protected]> Co-authored-by: Maziyar Panahi <[email protected]> * 2023-05-09-distilbart_xsum_6_6_en (#13788) * Add model 2023-05-09-distilbart_xsum_6_6_en * Add model 2023-05-09-distilbart_xsum_12_6_en * Add model 2023-05-09-distilbart_cnn_12_6_en * Add model 2023-05-09-distilbart_cnn_6_6_en * Add model 2023-05-09-bart_large_cnn_en * Update 2023-05-09-bart_large_cnn_en.md * Update 2023-05-09-distilbart_cnn_12_6_en.md * Update 2023-05-09-distilbart_cnn_6_6_en.md * Update 2023-05-09-distilbart_xsum_12_6_en.md * Update 2023-05-09-distilbart_xsum_6_6_en.md --------- Co-authored-by: prabod <[email protected]> Co-authored-by: Maziyar Panahi <[email protected]> * 2023-05-11-distilbart_cnn_12_6_en (#13795) * Add model 2023-05-11-distilbart_cnn_12_6_en * Add model 2023-05-11-distilbart_cnn_6_6_en * Add model 2023-05-11-distilbart_xsum_12_6_en * Add model 2023-05-11-distilbart_xsum_6_6_en * Add model 2023-05-11-bart_large_cnn_en * Update 2023-05-11-bart_large_cnn_en.md * Update 2023-05-11-distilbart_cnn_12_6_en.md * Update 2023-05-11-distilbart_cnn_6_6_en.md * Update 2023-05-11-distilbart_xsum_12_6_en.md * Update 2023-05-11-distilbart_xsum_6_6_en.md --------- Co-authored-by: prabod <[email protected]> Co-authored-by: Maziyar Panahi <[email protected]> * 2023-05-19-match_pattern_en (#13805) * Add model 2023-05-19-match_pattern_en * Add model 2023-05-19-dependency_parse_en * Add model 2023-05-20-explain_document_md_fr * Add model 2023-05-20-dependency_parse_en * Add model 2023-05-20-explain_document_md_it * Add model 2023-05-20-entity_recognizer_lg_fr * Add model 2023-05-20-entity_recognizer_md_fr * Add model 2023-05-20-entity_recognizer_lg_it * Add model 2023-05-20-entity_recognizer_md_it * Add model 2023-05-20-check_spelling_en * Add model 2023-05-20-match_datetime_en * Add model 2023-05-20-match_pattern_en * Add model 2023-05-20-clean_pattern_en * Add model 2023-05-20-clean_stop_en * Add model 2023-05-20-movies_sentiment_analysis_en * Add model 2023-05-20-explain_document_ml_en * Add model 2023-05-20-analyze_sentiment_en * Add model 2023-05-20-explain_document_dl_en * Add model 2023-05-20-recognize_entities_dl_en * Add model 2023-05-20-recognize_entities_bert_en * Add model 2023-05-20-explain_document_md_de * Add model 2023-05-21-entity_recognizer_lg_de * Add model 2023-05-21-entity_recognizer_md_de * Add model 2023-05-21-onto_recognize_entities_sm_en * Add model 2023-05-21-onto_recognize_entities_lg_en * Add model 2023-05-21-match_chunks_en * Add model 2023-05-21-explain_document_lg_es * Add model 2023-05-21-explain_document_md_es * Add model 2023-05-21-explain_document_sm_es * Add model 2023-05-21-entity_recognizer_lg_es * Add model 2023-05-21-entity_recognizer_md_es * Add model 2023-05-21-entity_recognizer_sm_es * Add model 2023-05-21-explain_document_lg_ru * Add model 2023-05-21-explain_document_md_ru * Add model 2023-05-21-explain_document_sm_ru * Add model 2023-05-21-entity_recognizer_lg_ru * Add model 2023-05-21-entity_recognizer_md_ru * Add model 2023-05-21-entity_recognizer_sm_ru * Add model 2023-05-21-text_cleaning_en * Add model 2023-05-21-explain_document_lg_pt * Add model 2023-05-21-explain_document_md_pt * Add model 2023-05-21-explain_document_sm_pt * Add model 2023-05-21-entity_recognizer_lg_pt * Add model 2023-05-21-entity_recognizer_md_pt * Add model 2023-05-21-entity_recognizer_sm_pt * Add model 2023-05-21-explain_document_lg_pl * Add model 2023-05-21-explain_document_md_pl * Add model 2023-05-21-explain_document_sm_pl * Add model 2023-05-21-entity_recognizer_lg_pl * Add model 2023-05-21-entity_recognizer_md_pl * Add model 2023-05-21-entity_recognizer_sm_pl * Add model 2023-05-21-explain_document_lg_nl * Add model 2023-05-21-explain_document_md_nl * Add model 2023-05-21-explain_document_sm_nl * Add model 2023-05-21-entity_recognizer_lg_nl * Add model 2023-05-21-entity_recognizer_md_nl * Add model 2023-05-21-entity_recognizer_sm_nl * Add model 2023-05-21-analyze_sentimentdl_glove_imdb_en * Add model 2023-05-21-explain_document_lg_no * Add model 2023-05-21-explain_document_md_no * Add model 2023-05-21-explain_document_sm_no * Add model 2023-05-21-entity_recognizer_lg_no * Add model 2023-05-21-entity_recognizer_md_no * Add model 2023-05-21-entity_recognizer_sm_no * Add model 2023-05-21-explain_document_lg_sv * Add model 2023-05-21-explain_document_md_sv * Add model 2023-05-21-explain_document_sm_sv * Add model 2023-05-21-entity_recognizer_lg_sv * Add model 2023-05-21-entity_recognizer_md_sv * Add model 2023-05-21-entity_recognizer_sm_sv * Add model 2023-05-21-explain_document_lg_da * Add model 2023-05-21-explain_document_md_da * Add model 2023-05-21-explain_document_sm_da * Add model 2023-05-21-entity_recognizer_lg_da * Add model 2023-05-21-entity_recognizer_md_da * Add model 2023-05-21-entity_recognizer_sm_da * Add model 2023-05-21-explain_document_lg_fi * Add model 2023-05-21-explain_document_md_fi * Add model 2023-05-21-explain_document_sm_fi * Add model 2023-05-21-entity_recognizer_lg_fi * Add model 2023-05-21-entity_recognizer_md_fi * Add model 2023-05-21-entity_recognizer_sm_fi * Add model 2023-05-21-onto_recognize_entities_bert_base_en * Add model 2023-05-21-onto_recognize_entities_bert_large_en * Add model 2023-05-21-onto_recognize_entities_bert_medium_en * Add model 2023-05-21-onto_recognize_entities_bert_mini_en * Add model 2023-05-21-onto_recognize_entities_bert_small_en * Add model 2023-05-21-onto_recognize_entities_bert_tiny_en * Add model 2023-05-21-onto_recognize_entities_electra_base_en * Add model 2023-05-21-onto_recognize_entities_electra_small_en * Add model 2023-05-21-onto_recognize_entities_electra_large_en * Add model 2023-05-21-recognize_entities_dl_fa * Add model 2023-05-21-nerdl_fewnerd_subentity_100d_pipeline_en * Add model 2023-05-21-nerdl_fewnerd_100d_pipeline_en * Add model 2023-05-21-pos_ud_bokmaal_nb * Add model 2023-05-21-xlm_roberta_large_token_classifier_masakhaner_pipeline_xx * Add model 2023-05-21-bert_token_classifier_scandi_ner_pipeline_xx * Add model 2023-05-21-bert_sequence_classifier_trec_coarse_pipeline_en * Add model 2023-05-21-bert_sequence_classifier_age_news_pipeline_en * Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeline_is * Add model 2023-05-21-distilbert_base_token_classifier_masakhaner_pipeline_xx * Add model 2023-05-21-nerdl_restaurant_100d_pipeline_en * Add model 2023-05-21-roberta_token_classifier_timex_semeval_pipeline_en * Add model 2023-05-21-bert_token_classifier_hi_en_ner_pipeline_hi * Add model 2023-05-21-xlm_roberta_large_token_classifier_hrl_pipeline_xx * Add model 2023-05-21-spellcheck_dl_pipeline_en * Add model 2023-05-21-bert_token_classifier_dutch_udlassy_ner_pipeline_nl * Add model 2023-05-21-xlm_roberta_large_token_classifier_conll03_pipeline_de * Add model 2023-05-21-roberta_token_classifier_bne_capitel_ner_pipeline_es * Add model 2023-05-21-roberta_token_classifier_icelandic_ner_pipeline_is * Add model 2023-05-21-longformer_base_token_classifier_conll03_pipeline_en * Add model 2023-05-21-longformer_large_token_classifier_conll03_pipeline_en * Add model 2023-05-21-xlnet_base_token_classifier_conll03_pipeline_en * Add model 2023-05-21-xlm_roberta_base_token_classifier_ontonotes_pipeline_en * Add model 2023-05-21-xlm_roberta_base_token_classifier_conll03_pipeline_en * Add model 2023-05-21-xlnet_large_token_classifier_conll03_pipeline_en * Add model 2023-05-21-albert_base_token_classifier_conll03_pipeline_en * Add model 2023-05-21-albert_large_token_classifier_conll03_pipeline_en * Add model 2023-05-21-albert_xlarge_token_classifier_conll03_pipeline_en * Add model 2023-05-21-distilroberta_base_token_classifier_ontonotes_pipeline_en * Add model 2023-05-21-roberta_base_token_classifier_ontonotes_pipeline_en * Add model 2023-05-21-roberta_large_token_classifier_conll03_pipeline_en * Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeline_en --------- Co-authored-by: ahmedlone127 <[email protected]> --------- Co-authored-by: jsl-models <[email protected]> Co-authored-by: Naveen-004 <[email protected]> Co-authored-by: ahmedlone127 <[email protected]> Co-authored-by: prabod <[email protected]>
1 parent ef7906c commit 9f1e2ef

File tree

128 files changed

+14612
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

128 files changed

+14612
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,119 @@
1+
---
2+
layout: model
3+
title: Typed Dependency Parsing pipeline for English
4+
author: John Snow Labs
5+
name: dependency_parse
6+
date: 2023-05-19
7+
tags: [pipeline, dependency_parsing, untyped_dependency_parsing, typed_dependency_parsing, laballed_depdency_parsing, unlaballed_depdency_parsing, en, open_source]
8+
task: Dependency Parser
9+
language: en
10+
edition: Spark NLP 4.4.2
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
Typed Dependency parser, trained on the on the CONLL dataset.
22+
23+
Dependency parsing is the task of extracting a dependency parse of a sentence that represents its grammatical structure and defines the relationships between “head” words and words, which modify those heads.
24+
25+
## Predicted Entities
26+
27+
28+
29+
{:.btn-box}
30+
<button class="button button-orange" disabled>Live Demo</button>
31+
<button class="button button-orange" disabled>Open in Colab</button>
32+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
33+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
34+
35+
## How to use
36+
37+
<div class="tabs-box" markdown="1">
38+
{% include programmingLanguageSelectScalaPythonNLU.html %}
39+
```python
40+
41+
from sparknlp.pretrained import PretrainedPipeline
42+
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
43+
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
44+
annotations.keys()
45+
46+
```
47+
```scala
48+
49+
val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
50+
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)
51+
52+
```
53+
54+
{:.nlu-block}
55+
```python
56+
57+
nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")
58+
59+
60+
```
61+
</div>
62+
63+
<div class="tabs-box" markdown="1">
64+
{% include programmingLanguageSelectScalaPythonNLU.html %}
65+
```python
66+
from sparknlp.pretrained import PretrainedPipeline
67+
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
68+
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
69+
annotations.keys()
70+
```
71+
```scala
72+
val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
73+
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)
74+
```
75+
76+
{:.nlu-block}
77+
```python
78+
nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")
79+
```
80+
</div>
81+
82+
## Results
83+
84+
```bash
85+
Results
86+
87+
88+
+---------------------------------------------------------------------------------+--------------------------------------------------------+
89+
|result |result |
90+
+---------------------------------------------------------------------------------+--------------------------------------------------------+
91+
|[ROOT, Dependencies, represents, words, relationships, Sentence, Sentence, words]|[root, parataxis, nsubj, amod, nsubj, case, nsubj, flat]|
92+
+---------------------------------------------------------------------------------+--------------------------------------------------------+
93+
94+
95+
96+
{:.model-param}
97+
```
98+
99+
{:.model-param}
100+
## Model Information
101+
102+
{:.table-model}
103+
|---|---|
104+
|Model Name:|dependency_parse|
105+
|Type:|pipeline|
106+
|Compatibility:|Spark NLP 4.4.2+|
107+
|License:|Open Source|
108+
|Edition:|Official|
109+
|Language:|en|
110+
|Size:|23.8 MB|
111+
112+
## Included Models
113+
114+
- DocumentAssembler
115+
- SentenceDetector
116+
- TokenizerModel
117+
- PerceptronModel
118+
- DependencyParserModel
119+
- TypedDependencyParserModel
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
---
2+
layout: model
3+
title: Match Pattern
4+
author: John Snow Labs
5+
name: match_pattern
6+
date: 2023-05-19
7+
tags: [en, open_source]
8+
task: Text Classification
9+
language: en
10+
edition: Spark NLP 4.4.2
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
The match_pattern is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and matches pattrens .
22+
It performs most of the common text processing tasks on your dataframe
23+
24+
## Predicted Entities
25+
26+
27+
28+
{:.btn-box}
29+
<button class="button button-orange" disabled>Live Demo</button>
30+
<button class="button button-orange" disabled>Open in Colab</button>
31+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
32+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
33+
34+
## How to use
35+
36+
<div class="tabs-box" markdown="1">
37+
{% include programmingLanguageSelectScalaPythonNLU.html %}
38+
```python
39+
40+
from sparknlp.pretrained import PretrainedPipeline
41+
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
42+
result = pipeline.annotate("""I love johnsnowlabs! """)
43+
```
44+
45+
</div>
46+
47+
{:.model-param}
48+
49+
<div class="tabs-box" markdown="1">
50+
{% include programmingLanguageSelectScalaPythonNLU.html %}
51+
```python
52+
from sparknlp.pretrained import PretrainedPipeline
53+
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
54+
result = pipeline.annotate("""I love johnsnowlabs! """)
55+
```
56+
57+
</div>
58+
59+
{:.model-param}
60+
## Model Information
61+
62+
{:.table-model}
63+
|---|---|
64+
|Model Name:|match_pattern|
65+
|Type:|pipeline|
66+
|Compatibility:|Spark NLP 4.4.2+|
67+
|License:|Open Source|
68+
|Edition:|Official|
69+
|Language:|en|
70+
|Size:|29.1 KB|
71+
72+
## Included Models
73+
74+
- DocumentAssembler
75+
- SentenceDetector
76+
- TokenizerModel
77+
- RegexMatcherModel
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,130 @@
1+
---
2+
layout: model
3+
title: Sentiment Analysis pipeline for English
4+
author: John Snow Labs
5+
name: analyze_sentiment
6+
date: 2023-05-20
7+
tags: [open_source, english, analyze_sentiment, pipeline, en]
8+
task: Named Entity Recognition
9+
language: en
10+
edition: Spark NLP 4.4.2
11+
spark_version: 3.0
12+
supported: true
13+
annotator: PipelineModel
14+
article_header:
15+
type: cover
16+
use_language_switcher: "Python-Scala-Java"
17+
---
18+
19+
## Description
20+
21+
The analyze_sentiment is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
22+
and recognizes entities .
23+
It performs most of the common text processing tasks on your dataframe
24+
25+
## Predicted Entities
26+
27+
28+
29+
{:.btn-box}
30+
<button class="button button-orange" disabled>Live Demo</button>
31+
<button class="button button-orange" disabled>Open in Colab</button>
32+
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
33+
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}
34+
35+
## How to use
36+
37+
<div class="tabs-box" markdown="1">
38+
{% include programmingLanguageSelectScalaPythonNLU.html %}
39+
40+
```python
41+
42+
from sparknlp.pretrained import PretrainedPipeline
43+
44+
pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')
45+
46+
result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
47+
48+
49+
```
50+
```scala
51+
52+
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
53+
54+
val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")
55+
56+
val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
57+
58+
```
59+
60+
{:.nlu-block}
61+
```python
62+
63+
import nlu
64+
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
65+
result_df = nlu.load('en.classify').predict(text)
66+
result_df
67+
68+
```
69+
</div>
70+
71+
<div class="tabs-box" markdown="1">
72+
{% include programmingLanguageSelectScalaPythonNLU.html %}
73+
```python
74+
from sparknlp.pretrained import PretrainedPipeline
75+
76+
pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')
77+
78+
result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
79+
```
80+
```scala
81+
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline
82+
83+
val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")
84+
85+
val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
86+
```
87+
88+
{:.nlu-block}
89+
```python
90+
import nlu
91+
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
92+
result_df = nlu.load('en.classify').predict(text)
93+
result_df
94+
```
95+
</div>
96+
97+
## Results
98+
99+
```bash
100+
Results
101+
102+
103+
| | text | sentiment |
104+
|---:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
105+
| 0 | Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now! | positive |
106+
107+
108+
{:.model-param}
109+
```
110+
111+
{:.model-param}
112+
## Model Information
113+
114+
{:.table-model}
115+
|---|---|
116+
|Model Name:|analyze_sentiment|
117+
|Type:|pipeline|
118+
|Compatibility:|Spark NLP 4.4.2+|
119+
|License:|Open Source|
120+
|Edition:|Official|
121+
|Language:|en|
122+
|Size:|5.1 MB|
123+
124+
## Included Models
125+
126+
- DocumentAssembler
127+
- SentenceDetector
128+
- TokenizerModel
129+
- NorvigSweetingModel
130+
- ViveknSentimentModel

0 commit comments

Comments
 (0)