@@ -160,13 +160,6 @@ Print (using [`print`](:func:`print`)) `x` followed by a newline.
160
160
"""
161
161
println
162
162
163
- """
164
- besselj(nu, x)
165
-
166
- Bessel function of the first kind of order `nu`, ``J_\\ nu(x)``.
167
- """
168
- besselj
169
-
170
163
"""
171
164
//(num, den)
172
165
@@ -225,13 +218,6 @@ Multiply elements of `A` over the singleton dimensions of `r`, and write results
225
218
"""
226
219
prod!
227
220
228
- """
229
- airybi(x)
230
-
231
- Airy function ``\\ operatorname{Bi}(x)``.
232
- """
233
- airybi
234
-
235
221
"""
236
222
gensym([tag])
237
223
@@ -370,13 +356,6 @@ cannot be used with empty collections (see `reduce(op, itr)`).
370
356
"""
371
357
foldl (op, itr)
372
358
373
- """
374
- airybiprime(x)
375
-
376
- Airy function derivative ``\\ operatorname{Bi}'(x)``.
377
- """
378
- airybiprime
379
-
380
359
"""
381
360
Ac_rdiv_B(A, B)
382
361
@@ -784,13 +763,6 @@ Get the local machine's host name.
784
763
"""
785
764
gethostname
786
765
787
- """
788
- hankelh1x(nu, x)
789
-
790
- Scaled Bessel function of the third kind of order `nu`, ``H^{(1)}_\\ nu(x) e^{-x i}``.
791
- """
792
- hankelh1x
793
-
794
766
"""
795
767
replace(string, pat, r[, n])
796
768
@@ -940,13 +912,6 @@ This would create a 25-by-30000 `BitArray`, linked to the file associated with s
940
912
"""
941
913
Mmap. mmap (io, :: BitArray , dims = ?, offset = ?)
942
914
943
- """
944
- airyprime(x)
945
-
946
- Airy function derivative ``\\ operatorname{Ai}'(x)``.
947
- """
948
- airyprime
949
-
950
915
"""
951
916
bessely0(x)
952
917
@@ -977,13 +942,6 @@ Decodes the base64-encoded `string` and returns a `Vector{UInt8}` of the decoded
977
942
"""
978
943
base64decode
979
944
980
- """
981
- besselkx(nu, x)
982
-
983
- Scaled modified Bessel function of the second kind of order `nu`, ``K_\\ nu(x) e^x``.
984
- """
985
- besselkx
986
-
987
945
"""
988
946
oct(n, [pad])
989
947
@@ -1259,13 +1217,6 @@ Wrap an expression in a `Task` and add it to the local machine's scheduler queue
1259
1217
"""
1260
1218
:@schedule
1261
1219
1262
- """
1263
- bessely(nu, x)
1264
-
1265
- Bessel function of the second kind of order `nu`, ``Y_\\ nu(x)``.
1266
- """
1267
- bessely
1268
-
1269
1220
"""
1270
1221
gradient(F, [h])
1271
1222
@@ -1484,13 +1435,6 @@ be passed, to be returned from the last `produce` call in the producer.
1484
1435
"""
1485
1436
consume
1486
1437
1487
- """
1488
- hankelh2x(nu, x)
1489
-
1490
- Scaled Bessel function of the third kind of order `nu`, ``H^{(2)}_\\ nu(x) e^{x i}``.
1491
- """
1492
- hankelh2x
1493
-
1494
1438
"""
1495
1439
ndigits(n, b = 10)
1496
1440
@@ -1764,13 +1708,6 @@ Construct a tuple of the given objects.
1764
1708
"""
1765
1709
tuple
1766
1710
1767
- """
1768
- besseli(nu, x)
1769
-
1770
- Modified Bessel function of the first kind of order `nu`, ``I_\\ nu(x)``.
1771
- """
1772
- besseli
1773
-
1774
1711
"""
1775
1712
eachmatch(r::Regex, s::AbstractString[, overlap::Bool=false])
1776
1713
@@ -1892,14 +1829,6 @@ Bitwise and.
1892
1829
"""
1893
1830
&
1894
1831
1895
- """
1896
- besselyx(nu, x)
1897
-
1898
- Scaled Bessel function of the second kind of order `nu`,
1899
- ``Y_\\ nu(x) e^{- | \\ operatorname{Im}(x) |}``.
1900
- """
1901
- besselyx
1902
-
1903
1832
"""
1904
1833
eigmax(A)
1905
1834
@@ -2342,13 +2271,6 @@ to control the precision of the output (e.g. to avoid overflow).
2342
2271
"""
2343
2272
cumprod
2344
2273
2345
- """
2346
- besseljx(nu, x)
2347
-
2348
- Scaled Bessel function of the first kind of order `nu`, ``J_\\ nu(x) e^{- | \\ operatorname{Im}(x) |}``.
2349
- """
2350
- besseljx
2351
-
2352
2274
"""
2353
2275
print(x)
2354
2276
@@ -2752,13 +2674,6 @@ Create all directories in the given `path`, with permissions `mode`. `mode` defa
2752
2674
"""
2753
2675
mkpath
2754
2676
2755
- """
2756
- besselix(nu, x)
2757
-
2758
- Scaled modified Bessel function of the first kind of order `nu`, ``I_\\ nu(x) e^{- | \\ operatorname{Re}(x) |}``.
2759
- """
2760
- besselix
2761
-
2762
2677
"""
2763
2678
union(s1,s2...)
2764
2679
∪(s1,s2...)
@@ -3923,13 +3838,6 @@ Bitwise not.
3923
3838
"""
3924
3839
~
3925
3840
3926
- """
3927
- hankelh1(nu, x)
3928
-
3929
- Bessel function of the third kind of order `nu`, ``H^{(1)}_\\ nu(x)``.
3930
- """
3931
- hankelh1
3932
-
3933
3841
"""
3934
3842
rem(x, y)
3935
3843
%(x, y)
@@ -4390,13 +4298,6 @@ Get a module's enclosing `Module`. `Main` is its own parent, as is `LastMain` af
4390
4298
"""
4391
4299
module_parent
4392
4300
4393
- """
4394
- airyaiprime(x)
4395
-
4396
- Airy function derivative ``\\ operatorname{Ai}'(x)``.
4397
- """
4398
- airyaiprime
4399
-
4400
4301
"""
4401
4302
prepend!(collection, items) -> collection
4402
4303
@@ -5193,13 +5094,6 @@ called in last in first out (LIFO) order and run before object finalizers.
5193
5094
"""
5194
5095
atexit
5195
5096
5196
- """
5197
- besselk(nu, x)
5198
-
5199
- Modified Bessel function of the second kind of order `nu`, ``K_\\ nu(x)``.
5200
- """
5201
- besselk
5202
-
5203
5097
"""
5204
5098
readchomp(x)
5205
5099
@@ -5830,13 +5724,6 @@ general.
5830
5724
"""
5831
5725
setdiff
5832
5726
5833
- """
5834
- airyai(x)
5835
-
5836
- Airy function ``\\ operatorname{Ai}(x)``.
5837
- """
5838
- airyai
5839
-
5840
5727
"""
5841
5728
error(message::AbstractString)
5842
5729
@@ -6282,13 +6169,6 @@ julia> leading_zeros(Int32(1))
6282
6169
"""
6283
6170
leading_zeros
6284
6171
6285
- """
6286
- hankelh2(nu, x)
6287
-
6288
- Bessel function of the third kind of order `nu`, ``H^{(2)}_\\ nu(x)``.
6289
- """
6290
- hankelh2
6291
-
6292
6172
"""
6293
6173
lexcmp(x, y)
6294
6174
@@ -6966,13 +6846,6 @@ characters, tests whether the last character of `string` belongs to that set.
6966
6846
"""
6967
6847
endswith
6968
6848
6969
- """
6970
- airy(k,x)
6971
-
6972
- The `k`th derivative of the Airy function ``\\ operatorname{Ai}(x)``.
6973
- """
6974
- airy
6975
-
6976
6849
"""
6977
6850
!(x)
6978
6851
@@ -7377,15 +7250,6 @@ Get the backtrace of the current exception, for use within `catch` blocks.
7377
7250
"""
7378
7251
catch_backtrace
7379
7252
7380
- """
7381
- airyx(k,x)
7382
-
7383
- scaled `k`th derivative of the Airy function, return ``\\ operatorname{Ai}(x) e^{\\ frac{2}{3} x \\ sqrt{x}}``
7384
- for `k == 0 || k == 1`, and ``\\ operatorname{Ai}(x) e^{- \\ left| \\ operatorname{Re} \\ left( \\ frac{2}{3} x \\ sqrt{x} \\ right) \\ right|}``
7385
- for `k == 2 || k == 3`.
7386
- """
7387
- airyx
7388
-
7389
7253
"""
7390
7254
get_zero_subnormals() -> Bool
7391
7255
0 commit comments