|
| 1 | +from typing import Optional |
| 2 | + |
| 3 | +from tensorrt_llm._utils import local_mpi_rank |
| 4 | + |
| 5 | +from ..pyexecutor.llm_request import LlmRequest |
| 6 | +from ..pyexecutor.resource_manager import ResourceManager |
| 7 | +from ..pyexecutor.scheduler import ScheduledRequests |
| 8 | +from .drafter import Drafter |
| 9 | +from .eagle3 import Eagle3ResourceManager, Eagle3SpecMetadata |
| 10 | + |
| 11 | + |
| 12 | +@dataclass |
| 13 | +class SaveHiddenStatesSpecMetadata(Eagle3SpecMetadata): |
| 14 | + save_last_layer_post_norm: bool = False |
| 15 | + |
| 16 | + def is_final_output_capture(self): |
| 17 | + return self.save_last_layer_post_norm |
| 18 | + |
| 19 | + def maybe_capture_final_hidden_states(self, |
| 20 | + hidden_states: torch.Tensor) -> None: |
| 21 | + if self.save_last_layer_post_norm: |
| 22 | + # Assume no chunking, BS=1 |
| 23 | + eagle3_hidden_states = self.eagle3_resource_manager.last_hidden_states |
| 24 | + eagle3_hidden_states.copy_(hidden_states) |
| 25 | + |
| 26 | + |
| 27 | +class SaveHiddenStatesResourceManager(Eagle3ResourceManager): |
| 28 | + |
| 29 | + def __init__(self, config: "SaveHiddenStatesDecodingConfig", |
| 30 | + dtype: torch.dtype, hidden_size: int, max_num_requests: int, |
| 31 | + max_seq_len: int, max_num_tokens: int): |
| 32 | + super().__init__(config, dtype, hidden_size, max_num_requests, |
| 33 | + max_seq_len, max_num_tokens) |
| 34 | + self.last_hidden_states = None |
| 35 | + if config.save_last_layer_post_norm: |
| 36 | + self.last_hidden_states = torch.empty( |
| 37 | + (max_num_tokens, self.hidden_size), |
| 38 | + dtype=self.dtype, |
| 39 | + device='cuda') |
| 40 | + |
| 41 | + |
| 42 | +class SaveHiddenStatesDrafter(Drafter): |
| 43 | + |
| 44 | + def __init__( |
| 45 | + self, |
| 46 | + spec_config: SaveHiddenStatesDecodingConfig, |
| 47 | + ): |
| 48 | + super().__init__(spec_config.max_concurrency) |
| 49 | + self.spec_config = spec_config |
| 50 | + self.max_draft_len = spec_config.max_draft_len |
| 51 | + self._iter = 0 |
| 52 | + self._output_directory = spec_config.output_directory |
| 53 | + self._file_prefix = spec_config.file_prefix |
| 54 | + self._write_interval = spec_config.write_interval |
| 55 | + self._saved_state = [] |
| 56 | + |
| 57 | + def _process_request(self, request: LlmRequest) -> None: |
| 58 | + out_dict = {} |
| 59 | + if local_mpi_rank() != 0: |
| 60 | + input_ids = torch.tensor(list(request.get_tokens(0)), |
| 61 | + dtype=torch.long, |
| 62 | + device='cpu') |
| 63 | + hidden_size = resource_manager.hidden_size |
| 64 | + if self.spec_config.save_last_layer_post_norm: |
| 65 | + hidden_states = resource_manager.last_hidden_states.cpu().clone( |
| 66 | + ) |
| 67 | + else: |
| 68 | + hidden_states = resource_manager.hidden_states[:, |
| 69 | + -hidden_size:].cpu( |
| 70 | + ).clone() |
| 71 | + |
| 72 | + out_dict = { |
| 73 | + "id": |
| 74 | + self.iteration, |
| 75 | + "input_ids": |
| 76 | + input_ids, |
| 77 | + "hidden_state_features": |
| 78 | + resource_manager.hidden_states.cpu().clone(), |
| 79 | + "hidden_state": |
| 80 | + hidden_states, |
| 81 | + } |
| 82 | + |
| 83 | + self._saved_state.append(out_dict) |
| 84 | + |
| 85 | + def _write_to_file(self) -> None: |
| 86 | + if local_mpi_rank() == 0 and self.iteration != self.start_iteration: |
| 87 | + output_path = os.path.join(self._output_directory, |
| 88 | + f"{self._file_prefix}_{self._iter}.pt") |
| 89 | + torch.save(self._saved_state, output_path) |
| 90 | + self._saved_state = [] |
| 91 | + |
| 92 | + def prepare_draft_tokens( |
| 93 | + self, |
| 94 | + scheduled_requests: ScheduledRequests, |
| 95 | + resource_manager: Optional[ResourceManager] = None, |
| 96 | + ) -> None: |
| 97 | + for request in sorted( |
| 98 | + scheduled_requests.context_requests, |
| 99 | + key=lambda r: |
| 100 | + (r.py_batch_idx is None, r.py_batch_idx or r.request_id), |
| 101 | + ): |
| 102 | + request.py_max_new_tokens = 1 |
| 103 | + self._process_request(request, resource_manager) |
| 104 | + if self._iter % self._write_interval == 0: |
| 105 | + self._write_to_file() |
| 106 | + self._iter += 1 |
| 107 | + # Pad length to `self.max_draft_len` |
| 108 | + if len(draft_tokens) > 0: |
| 109 | + pad_length = self.max_draft_len - len(draft_tokens) |
| 110 | + draft_tokens.extend([0] * pad_length) |
| 111 | + request.py_draft_tokens = draft_tokens |
0 commit comments