|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import paddle |
| 19 | + |
| 20 | +from fastdeploy.model_executor.ops.gpu import speculate_get_padding_offset |
| 21 | + |
| 22 | + |
| 23 | +def ref_speculate_get_padding_offset(cum_offsets, seq_lens, max_seq_len, token_num_data): |
| 24 | + bsz = seq_lens.shape[0] |
| 25 | + |
| 26 | + padding_offset = np.zeros([token_num_data], dtype=np.int32) |
| 27 | + batch_id_per_token = np.zeros([token_num_data], dtype=np.int32) |
| 28 | + cum_offsets_out = np.zeros([bsz], dtype=np.int32) |
| 29 | + cu_seqlens_q = np.zeros([bsz + 1], dtype=np.int32) |
| 30 | + cu_seqlens_k = np.zeros([bsz + 1], dtype=np.int32) |
| 31 | + |
| 32 | + modified_indices = { |
| 33 | + "padding_offset": [], |
| 34 | + "cum_offsets_out": [], |
| 35 | + "cu_seqlens_q": [], |
| 36 | + "cu_seqlens_k": [], |
| 37 | + } |
| 38 | + |
| 39 | + cu_seqlens_q[0] = 0 |
| 40 | + cu_seqlens_k[0] = 0 |
| 41 | + modified_indices["cu_seqlens_q"].append(0) |
| 42 | + modified_indices["cu_seqlens_k"].append(0) |
| 43 | + |
| 44 | + for bi in range(bsz): |
| 45 | + cum_offset = 0 if bi == 0 else cum_offsets[bi - 1] |
| 46 | + cum_offsets_out[bi] = cum_offset |
| 47 | + modified_indices["cum_offsets_out"].append(bi) |
| 48 | + |
| 49 | + for i in range(seq_lens[bi]): |
| 50 | + idx = bi * max_seq_len - cum_offset + i |
| 51 | + if idx >= 0 and idx < token_num_data: |
| 52 | + if idx == 0: |
| 53 | + print(idx, bi, cum_offset) |
| 54 | + padding_offset[idx] = cum_offset |
| 55 | + batch_id_per_token[idx] = bi |
| 56 | + modified_indices["padding_offset"].append(idx) |
| 57 | + |
| 58 | + cum_seq_len = (bi + 1) * max_seq_len - cum_offsets[bi] |
| 59 | + cu_seqlens_q[bi + 1] = cum_seq_len |
| 60 | + cu_seqlens_k[bi + 1] = cum_seq_len |
| 61 | + modified_indices["cu_seqlens_q"].append(bi + 1) |
| 62 | + modified_indices["cu_seqlens_k"].append(bi + 1) |
| 63 | + |
| 64 | + return ( |
| 65 | + padding_offset, |
| 66 | + cum_offsets_out, |
| 67 | + cu_seqlens_q, |
| 68 | + cu_seqlens_k, |
| 69 | + modified_indices, |
| 70 | + batch_id_per_token, |
| 71 | + ) |
| 72 | + |
| 73 | + |
| 74 | +class TestSpeculateGetPaddingOffset(unittest.TestCase): |
| 75 | + def test_speculate_get_padding_offset(self): |
| 76 | + test_case = { |
| 77 | + "bsz": 4, |
| 78 | + "max_seq_len": 10, |
| 79 | + "token_num_data": 32, |
| 80 | + "cum_offsets": np.array([2, 5, 8, 12], dtype=np.int32), |
| 81 | + "seq_lens": np.array([8, 5, 7, 6], dtype=np.int32), |
| 82 | + "seq_lens_encoder": np.array([1, 0, 1, 0], dtype=np.int32), |
| 83 | + } |
| 84 | + |
| 85 | + max_draft_tokens = 4 |
| 86 | + |
| 87 | + input_ids = np.random.randint(0, 1000, (test_case["bsz"], test_case["max_seq_len"]), dtype=np.int64) |
| 88 | + draft_tokens = np.random.randint(0, 1000, (test_case["bsz"], max_draft_tokens), dtype=np.int64) |
| 89 | + token_num = np.array([test_case["token_num_data"]], dtype=np.int64) |
| 90 | + |
| 91 | + input_ids_tensor = paddle.to_tensor(input_ids) |
| 92 | + draft_tokens_tensor = paddle.to_tensor(draft_tokens) |
| 93 | + cum_offsets_tensor = paddle.to_tensor(test_case["cum_offsets"]) |
| 94 | + seq_lens_tensor = paddle.to_tensor(test_case["seq_lens"]) |
| 95 | + seq_lens_encoder_tensor = paddle.to_tensor(test_case["seq_lens_encoder"]) |
| 96 | + token_num_tensor = paddle.to_tensor(token_num) |
| 97 | + |
| 98 | + ( |
| 99 | + x_remove_padding, |
| 100 | + batch_id_per_token, |
| 101 | + cu_seqlens_q, |
| 102 | + cu_seqlens_k, |
| 103 | + ) = speculate_get_padding_offset( |
| 104 | + input_ids_tensor, |
| 105 | + draft_tokens_tensor, |
| 106 | + cum_offsets_tensor, |
| 107 | + token_num_tensor, |
| 108 | + seq_lens_tensor, |
| 109 | + seq_lens_encoder_tensor, |
| 110 | + ) |
| 111 | + |
| 112 | + ( |
| 113 | + ref_padding_offset, |
| 114 | + ref_cum_offsets_out, |
| 115 | + ref_cu_seqlens_q, |
| 116 | + ref_cu_seqlens_k, |
| 117 | + modified_indices, |
| 118 | + ref_batch_id_per_token, |
| 119 | + ) = ref_speculate_get_padding_offset( |
| 120 | + test_case["cum_offsets"], |
| 121 | + test_case["seq_lens"], |
| 122 | + test_case["max_seq_len"], |
| 123 | + test_case["token_num_data"], |
| 124 | + ) |
| 125 | + |
| 126 | + output_arrays = { |
| 127 | + "batch_id_per_token": batch_id_per_token.numpy(), |
| 128 | + "cu_seqlens_q": cu_seqlens_q.numpy(), |
| 129 | + "cu_seqlens_k": cu_seqlens_k.numpy(), |
| 130 | + } |
| 131 | + |
| 132 | + ref_arrays = { |
| 133 | + "batch_id_per_token": ref_batch_id_per_token, |
| 134 | + "cu_seqlens_q": ref_cu_seqlens_q, |
| 135 | + "cu_seqlens_k": ref_cu_seqlens_k, |
| 136 | + } |
| 137 | + |
| 138 | + for key in output_arrays: |
| 139 | + np.testing.assert_allclose(output_arrays[key], ref_arrays[key]) |
| 140 | + |
| 141 | + |
| 142 | +if __name__ == "__main__": |
| 143 | + unittest.main() |
0 commit comments