Skip to content

Commit decbadf

Browse files
authored
MAINT: remove content blocks for consistency (#339)
* MAINT: remove content blocks for consistency * remove duplicate target
1 parent 86ba660 commit decbadf

12 files changed

+3
-50
lines changed

lectures/ar1_processes.md

+1-4
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@ kernelspec:
1818
</div>
1919
```
2020

21+
(ar1_processes)=
2122
# AR1 Processes
2223

2324
```{admonition} Migrated lecture
@@ -29,10 +30,6 @@ This lecture has moved from our [Intermediate Quantitative Economics with Python
2930
```{index} single: Autoregressive processes
3031
```
3132

32-
```{contents} Contents
33-
:depth: 2
34-
```
35-
3633
## Overview
3734

3835
In this lecture we are going to study a very simple class of stochastic

lectures/eigen_II.md

-4
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,6 @@ kernelspec:
1616
```{index} single: The Perron-Frobenius Theorem
1717
```
1818

19-
```{contents} Contents
20-
:depth: 2
21-
```
22-
2319
In addition to what's in Anaconda, this lecture will need the following libraries:
2420

2521
```{code-cell} ipython3

lectures/heavy_tails.md

-4
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,6 @@ kernelspec:
1414
(heavy_tail)=
1515
# Heavy-Tailed Distributions
1616

17-
```{contents} Contents
18-
:depth: 2
19-
```
20-
2117
In addition to what's in Anaconda, this lecture will need the following libraries:
2218

2319
```{code-cell} ipython3

lectures/markov_chains_I.md

-4
Original file line numberDiff line numberDiff line change
@@ -17,10 +17,6 @@ kernelspec:
1717
```{index} single: Markov Chains: Basic Concepts and Stationarity
1818
```
1919

20-
```{contents} Contents
21-
:depth: 2
22-
```
23-
2420
In addition to what's in Anaconda, this lecture will need the following libraries:
2521

2622
```{code-cell} ipython3

lectures/markov_chains_II.md

-5
Original file line numberDiff line numberDiff line change
@@ -16,11 +16,6 @@ kernelspec:
1616
```{index} single: Markov Chains: Irreducibility and Ergodicity
1717
```
1818

19-
```{contents} Contents
20-
:depth: 2
21-
```
22-
23-
2419
In addition to what's in Anaconda, this lecture will need the following libraries:
2520

2621
```{code-cell} ipython3

lectures/prob_dist.md

-4
Original file line numberDiff line numberDiff line change
@@ -17,10 +17,6 @@ kernelspec:
1717
```{index} single: Distributions and Probabilities
1818
```
1919

20-
```{contents} Contents
21-
:depth: 2
22-
```
23-
2420
## Outline
2521

2622
In this lecture we give a quick introduction to data and probability distributions using Python.

lectures/scalar_dynam.md

+2-5
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,8 @@ kernelspec:
1717
</div>
1818
```
1919

20-
# {index}`Dynamics in One Dimension <single: Dynamics in One Dimension>`
21-
22-
```{contents} Contents
23-
:depth: 2
24-
```
20+
(scalar_dynam)=
21+
# Dynamics in One Dimension
2522

2623
## Overview
2724

lectures/schelling.md

-4
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,6 @@ kernelspec:
2828
```{index} single: Models; Schelling's Segregation Model
2929
```
3030

31-
```{contents} Contents
32-
:depth: 2
33-
```
34-
3531
## Outline
3632

3733
In 1969, Thomas C. Schelling developed a simple but striking model of racial

lectures/short_path.md

-4
Original file line numberDiff line numberDiff line change
@@ -23,10 +23,6 @@ kernelspec:
2323
```{index} single: Dynamic Programming; Shortest Paths
2424
```
2525

26-
```{contents} Contents
27-
:depth: 2
28-
```
29-
3026
## Overview
3127

3228
The shortest path problem is a [classic problem](https://en.wikipedia.org/wiki/Shortest_path) in mathematics and computer science with applications in

lectures/supply_demand_heterogeneity.md

-4
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,6 @@ kernelspec:
1414
(supply_demand_heterogeneity)=
1515
# Market Equilibrium with Heterogeneity
1616

17-
```{contents} Contents
18-
:depth: 2
19-
```
20-
2117
## Overview
2218

2319
In the {doc}`previous lecture

lectures/time_series_with_matrices.md

-4
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# Univariate Time Series with Matrix Algebra
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
## Overview
2824

2925
This lecture uses matrices to solve some linear difference equations.

lectures/troubleshooting.md

-4
Original file line numberDiff line numberDiff line change
@@ -20,10 +20,6 @@ kernelspec:
2020

2121
# Troubleshooting
2222

23-
```{contents} Contents
24-
:depth: 2
25-
```
26-
2723
This page is for readers experiencing errors when running the code from the lectures.
2824

2925
## Fixing your local environment

0 commit comments

Comments
 (0)