@@ -44,15 +44,15 @@ def example_multiproc_fn(env):
44
44
def test_example_multiproc (env ):
45
45
run_test_multiproc (env , 10 , lambda x : x .execute_command ('set' , 'x' , 1 ))
46
46
r = env .cmd ('get' , 'x' )
47
- env .assertEqual (r , b '1' )
47
+ env .assertEqual (r , '1' )
48
48
49
49
50
50
def test_set_tensor (env ):
51
51
con = env
52
52
con .execute_command ('AI.TENSORSET' , 'x' , 'FLOAT' , 2 , 'VALUES' , 2 , 3 )
53
53
tensor = con .execute_command ('AI.TENSORGET' , 'x' , 'VALUES' )
54
54
values = tensor [- 1 ]
55
- env .assertEqual (values , [b '2' , b '3' ])
55
+ env .assertEqual (values , ['2' , '3' ])
56
56
con .execute_command ('AI.TENSORSET' , 'x' , 'INT32' , 2 , 'VALUES' , 2 , 3 )
57
57
tensor = con .execute_command ('AI.TENSORGET' , 'x' , 'VALUES' )
58
58
values = tensor [- 1 ]
@@ -109,7 +109,7 @@ def test_del_tf_model(env):
109
109
110
110
ret = con .execute_command ('AI.MODELSET' , 'm' , 'TF' , 'CPU' ,
111
111
'INPUTS' , 'a' , 'b' , 'OUTPUTS' , 'mul' , model_pb )
112
- con .assertEqual (ret , b 'OK' )
112
+ con .assertEqual (ret , 'OK' )
113
113
114
114
con .execute_command ('AI.MODELDEL' , 'm' )
115
115
con .assertFalse (con .execute_command ('EXISTS' , 'm' ))
@@ -130,7 +130,7 @@ def test_run_tf_model(env):
130
130
131
131
ret = con .execute_command ('AI.MODELSET' , 'm' , 'TF' , 'CPU' ,
132
132
'INPUTS' , 'a' , 'b' , 'OUTPUTS' , 'mul' , model_pb )
133
- con .assertEqual (ret , b 'OK' )
133
+ con .assertEqual (ret , 'OK' )
134
134
135
135
try :
136
136
ret = con .execute_command ('AI.MODELSET' , 'm' , 'TF' , 'CPU' ,
@@ -227,7 +227,7 @@ def test_run_tf_model(env):
227
227
228
228
tensor = con .execute_command ('AI.TENSORGET' , 'c' , 'VALUES' )
229
229
values = tensor [- 1 ]
230
- con .assertEqual (values , [b '4' , b '9' , b '4' , b '9' ])
230
+ con .assertEqual (values , ['4' , '9' , '4' , '9' ])
231
231
232
232
for _ in con .reloadingIterator ():
233
233
env .assertExists ('m' )
@@ -250,7 +250,7 @@ def test_run_torch_model(env):
250
250
con = env
251
251
252
252
ret = con .execute_command ('AI.MODELSET' , 'm' , 'TORCH' , 'CPU' , model_pb )
253
- con .assertEqual (ret , b 'OK' )
253
+ con .assertEqual (ret , 'OK' )
254
254
255
255
try :
256
256
con .execute_command ('AI.MODELSET' , 'm' , 'TORCH' , 'CPU' , wrong_model_pb )
@@ -325,7 +325,7 @@ def test_run_torch_model(env):
325
325
326
326
tensor = con .execute_command ('AI.TENSORGET' , 'c' , 'VALUES' )
327
327
values = tensor [- 1 ]
328
- con .assertEqual (values , [b '4' , b '6' , b '4' , b '6' ])
328
+ con .assertEqual (values , ['4' , '6' , '4' , '6' ])
329
329
330
330
for _ in con .reloadingIterator ():
331
331
env .assertExists ('m' )
@@ -352,7 +352,7 @@ def test_run_onnx_model(env):
352
352
con = env
353
353
354
354
ret = con .execute_command ('AI.MODELSET' , 'm' , 'ONNX' , 'CPU' , model_pb )
355
- con .assertEqual (ret , b 'OK' )
355
+ con .assertEqual (ret , 'OK' )
356
356
357
357
try :
358
358
con .execute_command ('AI.MODELSET' , 'm' , 'ONNX' , 'CPU' , wrong_model_pb )
@@ -450,11 +450,11 @@ def test_run_onnxml_model(env):
450
450
con = env
451
451
452
452
ret = con .execute_command ('AI.MODELSET' , 'linear' , 'ONNX' , 'CPU' , linear_model )
453
- con .assertEqual (ret , b 'OK' )
453
+ con .assertEqual (ret , 'OK' )
454
454
455
455
con = env
456
456
ret = con .execute_command ('AI.MODELSET' , 'logreg' , 'ONNX' , 'CPU' , logreg_model )
457
- con .assertEqual (ret , b 'OK' )
457
+ con .assertEqual (ret , 'OK' )
458
458
459
459
con .execute_command ('AI.TENSORSET' , 'features' , 'FLOAT' , 1 , 4 , 'VALUES' , 5.1 , 3.5 , 1.4 , 0.2 )
460
460
@@ -479,7 +479,7 @@ def test_set_tensor_multiproc(env):
479
479
con = env
480
480
tensor = con .execute_command ('AI.TENSORGET' , 'x' , 'VALUES' )
481
481
values = tensor [- 1 ]
482
- env .assertEqual (values , [b '2' , b '3' ])
482
+ env .assertEqual (values , ['2' , '3' ])
483
483
484
484
485
485
def load_mobilenet_test_data ():
@@ -522,7 +522,7 @@ def test_run_mobilenet(env):
522
522
523
523
dtype , shape , data = con .execute_command ('AI.TENSORGET' , 'output' , 'BLOB' )
524
524
525
- dtype_map = {b 'FLOAT' : np .float32 }
525
+ dtype_map = {'FLOAT' : np .float32 }
526
526
tensor = np .frombuffer (data , dtype = dtype_map [dtype ]).reshape (shape )
527
527
label_id = np .argmax (tensor ) - 1
528
528
@@ -557,7 +557,7 @@ def test_run_mobilenet_multiproc(env):
557
557
558
558
dtype , shape , data = con .execute_command ('AI.TENSORGET' , 'output' , 'BLOB' )
559
559
560
- dtype_map = {b 'FLOAT' : np .float32 }
560
+ dtype_map = {'FLOAT' : np .float32 }
561
561
tensor = np .frombuffer (data , dtype = dtype_map [dtype ]).reshape (shape )
562
562
label_id = np .argmax (tensor ) - 1
563
563
@@ -609,7 +609,7 @@ def test_del_script(env):
609
609
script = f .read ()
610
610
611
611
ret = env .execute_command ('AI.SCRIPTSET' , 'ket' , 'CPU' , script )
612
- env .assertEqual (ret , b 'OK' )
612
+ env .assertEqual (ret , 'OK' )
613
613
614
614
ret = env .execute_command ('AI.SCRIPTDEL' , 'ket' )
615
615
env .assertFalse (env .execute_command ('EXISTS' , 'ket' ))
@@ -655,7 +655,7 @@ def test_run_script(env):
655
655
656
656
tensor = env .execute_command ('AI.TENSORGET' , 'c' , 'VALUES' )
657
657
values = tensor [- 1 ]
658
- env .assertEqual (values , [b '4' , b '6' , b '4' , b '6' ])
658
+ env .assertEqual (values , ['4' , '6' , '4' , '6' ])
659
659
660
660
for _ in env .reloadingIterator ():
661
661
env .assertExists ('ket' )
0 commit comments