-
-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy pathsegment_tree.rs
224 lines (206 loc) · 7.7 KB
/
segment_tree.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//! A module providing a Segment Tree data structure for efficient range queries
//! and updates. It supports operations like finding the minimum, maximum,
//! and sum of segments in an array.
use std::fmt::Debug;
use std::ops::Range;
/// Custom error types representing possible errors that can occur during operations on the `SegmentTree`.
#[derive(Debug, PartialEq, Eq)]
pub enum SegmentTreeError {
/// Error indicating that an index is out of bounds.
IndexOutOfBounds,
/// Error indicating that a range provided for a query is invalid.
InvalidRange,
}
/// A structure representing a Segment Tree. This tree can be used to efficiently
/// perform range queries and updates on an array of elements.
pub struct SegmentTree<T, F>
where
T: Debug + Default + Ord + Copy,
F: Fn(T, T) -> T,
{
/// The length of the input array for which the segment tree is built.
size: usize,
/// A vector representing the segment tree.
nodes: Vec<T>,
/// A merging function defined as a closure or callable type.
merge_fn: F,
}
impl<T, F> SegmentTree<T, F>
where
T: Debug + Default + Ord + Copy,
F: Fn(T, T) -> T,
{
/// Creates a new `SegmentTree` from the provided slice of elements.
///
/// # Arguments
///
/// * `arr`: A slice of elements of type `T` to initialize the segment tree.
/// * `merge`: A merging function that defines how to merge two elements of type `T`.
///
/// # Returns
///
/// A new `SegmentTree` instance populated with the given elements.
pub fn from_vec(arr: &[T], merge: F) -> Self {
let size = arr.len();
let mut buffer: Vec<T> = vec![T::default(); 2 * size];
// Populate the leaves of the tree
buffer[size..(2 * size)].clone_from_slice(arr);
for idx in (1..size).rev() {
buffer[idx] = merge(buffer[2 * idx], buffer[2 * idx + 1]);
}
SegmentTree {
size,
nodes: buffer,
merge_fn: merge,
}
}
/// Queries the segment tree for the result of merging the elements in the given range.
///
/// # Arguments
///
/// * `range`: A range specified as `Range<usize>`, indicating the start (inclusive)
/// and end (exclusive) indices of the segment to query.
///
/// # Returns
///
/// * `Ok(Some(result))` if the query was successful and there are elements in the range,
/// * `Ok(None)` if the range is empty,
/// * `Err(SegmentTreeError::InvalidRange)` if the provided range is invalid.
pub fn query(&self, range: Range<usize>) -> Result<Option<T>, SegmentTreeError> {
if range.start >= self.size || range.end > self.size {
return Err(SegmentTreeError::InvalidRange);
}
let mut left = range.start + self.size;
let mut right = range.end + self.size;
let mut result = None;
// Iterate through the segment tree to accumulate results
while left < right {
if left % 2 == 1 {
result = Some(match result {
None => self.nodes[left],
Some(old) => (self.merge_fn)(old, self.nodes[left]),
});
left += 1;
}
if right % 2 == 1 {
right -= 1;
result = Some(match result {
None => self.nodes[right],
Some(old) => (self.merge_fn)(old, self.nodes[right]),
});
}
left /= 2;
right /= 2;
}
Ok(result)
}
/// Updates the value at the specified index in the segment tree.
///
/// # Arguments
///
/// * `idx`: The index (0-based) of the element to update.
/// * `val`: The new value of type `T` to set at the specified index.
///
/// # Returns
///
/// * `Ok(())` if the update was successful,
/// * `Err(SegmentTreeError::IndexOutOfBounds)` if the index is out of bounds.
pub fn update(&mut self, idx: usize, val: T) -> Result<(), SegmentTreeError> {
if idx >= self.size {
return Err(SegmentTreeError::IndexOutOfBounds);
}
let mut index = idx + self.size;
if self.nodes[index] == val {
return Ok(());
}
self.nodes[index] = val;
while index > 1 {
index /= 2;
self.nodes[index] = (self.merge_fn)(self.nodes[2 * index], self.nodes[2 * index + 1]);
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::cmp::{max, min};
#[test]
fn test_min_segments() {
let vec = vec![-30, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8];
let mut min_seg_tree = SegmentTree::from_vec(&vec, min);
assert_eq!(min_seg_tree.query(4..7), Ok(Some(-5)));
assert_eq!(min_seg_tree.query(0..vec.len()), Ok(Some(-30)));
assert_eq!(min_seg_tree.query(0..2), Ok(Some(-30)));
assert_eq!(min_seg_tree.query(1..3), Ok(Some(-4)));
assert_eq!(min_seg_tree.query(1..7), Ok(Some(-5)));
assert_eq!(min_seg_tree.update(5, 10), Ok(()));
assert_eq!(min_seg_tree.update(14, -8), Ok(()));
assert_eq!(min_seg_tree.query(4..7), Ok(Some(3)));
assert_eq!(
min_seg_tree.update(15, 100),
Err(SegmentTreeError::IndexOutOfBounds)
);
assert_eq!(min_seg_tree.query(5..5), Ok(None));
assert_eq!(
min_seg_tree.query(10..16),
Err(SegmentTreeError::InvalidRange)
);
assert_eq!(
min_seg_tree.query(15..20),
Err(SegmentTreeError::InvalidRange)
);
}
#[test]
fn test_max_segments() {
let vec = vec![1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8];
let mut max_seg_tree = SegmentTree::from_vec(&vec, max);
assert_eq!(max_seg_tree.query(0..vec.len()), Ok(Some(15)));
assert_eq!(max_seg_tree.query(3..5), Ok(Some(7)));
assert_eq!(max_seg_tree.query(4..8), Ok(Some(11)));
assert_eq!(max_seg_tree.query(8..10), Ok(Some(9)));
assert_eq!(max_seg_tree.query(9..12), Ok(Some(15)));
assert_eq!(max_seg_tree.update(4, 10), Ok(()));
assert_eq!(max_seg_tree.update(14, -8), Ok(()));
assert_eq!(max_seg_tree.query(3..5), Ok(Some(10)));
assert_eq!(
max_seg_tree.update(15, 100),
Err(SegmentTreeError::IndexOutOfBounds)
);
assert_eq!(max_seg_tree.query(5..5), Ok(None));
assert_eq!(
max_seg_tree.query(10..16),
Err(SegmentTreeError::InvalidRange)
);
assert_eq!(
max_seg_tree.query(15..20),
Err(SegmentTreeError::InvalidRange)
);
}
#[test]
fn test_sum_segments() {
let vec = vec![1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8];
let mut sum_seg_tree = SegmentTree::from_vec(&vec, |a, b| a + b);
assert_eq!(sum_seg_tree.query(0..vec.len()), Ok(Some(38)));
assert_eq!(sum_seg_tree.query(1..4), Ok(Some(5)));
assert_eq!(sum_seg_tree.query(4..7), Ok(Some(4)));
assert_eq!(sum_seg_tree.query(6..9), Ok(Some(-3)));
assert_eq!(sum_seg_tree.query(9..vec.len()), Ok(Some(37)));
assert_eq!(sum_seg_tree.update(5, 10), Ok(()));
assert_eq!(sum_seg_tree.update(14, -8), Ok(()));
assert_eq!(sum_seg_tree.query(4..7), Ok(Some(19)));
assert_eq!(
sum_seg_tree.update(15, 100),
Err(SegmentTreeError::IndexOutOfBounds)
);
assert_eq!(sum_seg_tree.query(5..5), Ok(None));
assert_eq!(
sum_seg_tree.query(10..16),
Err(SegmentTreeError::InvalidRange)
);
assert_eq!(
sum_seg_tree.query(15..20),
Err(SegmentTreeError::InvalidRange)
);
}
}