diff --git a/Quickstart.ipynb b/Quickstart.ipynb index 905bf18..26251ec 100644 --- a/Quickstart.ipynb +++ b/Quickstart.ipynb @@ -2,56 +2,68 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, "source": [ "# TileDB Quickstart Notebook" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "This notebook will walk through usage of TileDB Cloud including User Defined Functions and Serverless SQL\n", "\n", "We will start off using the quickstart example arrays and then move to a real work dataset based on transit data from the Boston metro area." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], + "execution_count": 2, "source": [ "import tiledb, tiledb.cloud\n", "import pandas\n", "import numpy" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], + "execution_count": 3, "source": [ "# In TileDB Cloud hosted notebooks you are automatically signed in to the tiledb cloud python client\n", "# Uncomment the login command if running outside of TileDB Cloud\n", "#tiledb.cloud.login(username=\"xxx\", password=\"yyy\")" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "metadata": {}, "source": [ "First let's access the quickstart sparse array through the cloud service." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, + "execution_count": 4, + "source": [ + "with tiledb.open(\"tiledb://TileDB-Inc/quickstart_sparse\", ctx=tiledb.cloud.Ctx()) as A:\n", + " df = pandas.DataFrame(A[:])\n", + "\n", + "df" + ], "outputs": [ { + "output_type": "execute_result", "data": { + "text/plain": [ + " a rows cols\n", + "0 1 1 1\n", + "1 3 2 3\n", + "2 2 2 4" + ], "text/html": [ "