@@ -1636,6 +1636,41 @@ Other minor changes
1636
1636
moufangLoop : MoufangLoop a ℓ₁ → MoufangLoop b ℓ₂ → MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
1637
1637
```
1638
1638
1639
+ * Added new functions and proofs to ` Algebra.Construct.Flip.Op ` :
1640
+ ``` agda
1641
+ zero : Zero ≈ ε ∙ → Zero ≈ ε (flip ∙)
1642
+ distributes : (≈ DistributesOver ∙) + → (≈ DistributesOver (flip ∙)) +
1643
+ isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# →
1644
+ IsSemiringWithoutAnnihilatingZero + (flip *) 0# 1#
1645
+ isSemiring : IsSemiring + * 0# 1# → IsSemiring + (flip *) 0# 1#
1646
+ isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# →
1647
+ IsCommutativeSemiring + (flip *) 0# 1#
1648
+ isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring + * 0# 1# →
1649
+ IsCancellativeCommutativeSemiring + (flip *) 0# 1#
1650
+ isIdempotentSemiring : IsIdempotentSemiring + * 0# 1# →
1651
+ IsIdempotentSemiring + (flip *) 0# 1#
1652
+ isQuasiring : IsQuasiring + * 0# 1# → IsQuasiring + (flip *) 0# 1#
1653
+ isRingWithoutOne : IsRingWithoutOne + * - 0# → IsRingWithoutOne + (flip *) - 0#
1654
+ isNonAssociativeRing : IsNonAssociativeRing + * - 0# 1# →
1655
+ IsNonAssociativeRing + (flip *) - 0# 1#
1656
+ isRing : IsRing ≈ + * - 0# 1# → IsRing ≈ + (flip *) - 0# 1#
1657
+ isNearring : IsNearring + * 0# 1# - → IsNearring + (flip *) 0# 1# -
1658
+ isCommutativeRing : IsCommutativeRing + * - 0# 1# →
1659
+ IsCommutativeRing + (flip *) - 0# 1#
1660
+ semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ →
1661
+ SemiringWithoutAnnihilatingZero a ℓ
1662
+ commutativeSemiring : CommutativeSemiring a ℓ → CommutativeSemiring a ℓ
1663
+ cancellativeCommutativeSemiring : CancellativeCommutativeSemiring a ℓ →
1664
+ CancellativeCommutativeSemiring a ℓ
1665
+ idempotentSemiring : IdempotentSemiring a ℓ → IdempotentSemiring a ℓ
1666
+ quasiring : Quasiring a ℓ → Quasiring a ℓ
1667
+ ringWithoutOne : RingWithoutOne a ℓ → RingWithoutOne a ℓ
1668
+ nonAssociativeRing : NonAssociativeRing a ℓ → NonAssociativeRing a ℓ
1669
+ nearring : Nearring a ℓ → Nearring a ℓ
1670
+ ring : Ring a ℓ → Ring a ℓ
1671
+ commutativeRing : CommutativeRing a ℓ → CommutativeRing a ℓ
1672
+ ```
1673
+
1639
1674
* Added new definition to ` Algebra.Definitions ` :
1640
1675
``` agda
1641
1676
LeftDividesˡ : Op₂ A → Op₂ A → Set _
0 commit comments