|
| 1 | +{-# OPTIONS --safe --without-K #-} |
| 2 | + |
| 3 | +open import Relation.Binary using (TotalOrder) |
| 4 | + |
| 5 | +module Data.PriorityQueue.Base |
| 6 | + {a ℓ₁ ℓ₂} (totalOrder : TotalOrder a ℓ₁ ℓ₂) where |
| 7 | + |
| 8 | +open import Data.Empty |
| 9 | +open import Data.Maybe as Maybe |
| 10 | +open import Data.Maybe.Properties |
| 11 | +open import Data.Nat using (ℕ; zero; suc; _+_) |
| 12 | +open import Data.Nat.Properties |
| 13 | +open import Data.Product |
| 14 | +open import Data.List |
| 15 | +open import Data.List.Relation.Binary.Permutation.Propositional |
| 16 | +open import Data.List.Relation.Unary.All using (All) |
| 17 | +open import Function.Base |
| 18 | +open import Level renaming (suc to ℓ-suc) |
| 19 | +open import Relation.Binary |
| 20 | +open import Relation.Binary.PropositionalEquality as P |
| 21 | +open import Relation.Unary hiding (Empty) |
| 22 | +open import Relation.Nullary |
| 23 | +open import Induction.WellFounded |
| 24 | + |
| 25 | +open TotalOrder totalOrder renaming (Carrier to A) |
| 26 | + |
| 27 | +record RawPriorityQueue b ℓ : Set (a ⊔ ℓ-suc (b ⊔ ℓ)) where |
| 28 | + field |
| 29 | + Queue : Set b |
| 30 | + size : Queue → ℕ |
| 31 | + empty : Queue |
| 32 | + insert : A → Queue → Queue |
| 33 | + meld : Queue → Queue → Queue |
| 34 | + popMin : Queue → Maybe (A × Queue) |
| 35 | + |
| 36 | + singleton : A → Queue |
| 37 | + singleton x = insert x empty |
| 38 | + |
| 39 | + findMin : Queue → Maybe A |
| 40 | + findMin = Maybe.map proj₁ ∘ popMin |
| 41 | + |
| 42 | + deleteMin : Queue → Maybe Queue |
| 43 | + deleteMin = Maybe.map proj₂ ∘ popMin |
| 44 | + |
| 45 | + Empty : Pred Queue (a ⊔ b) |
| 46 | + Empty q = popMin q ≡ nothing |
| 47 | + |
| 48 | + ¬Empty : Pred Queue (a ⊔ b) |
| 49 | + ¬Empty q = ¬ Empty q |
| 50 | + |
| 51 | + PopMin : Queue → A → Queue → Set (a ⊔ b) |
| 52 | + PopMin q x q' = popMin q ≡ just (x , q') |
| 53 | + |
| 54 | + FindMin : REL Queue A a |
| 55 | + FindMin q x = findMin q ≡ just x |
| 56 | + |
| 57 | + DeleteMin : Rel Queue b |
| 58 | + DeleteMin q q' = deleteMin q ≡ just q' |
| 59 | + |
| 60 | + _≺_ : Rel Queue b |
| 61 | + q' ≺ q = DeleteMin q q' |
| 62 | + |
| 63 | + _⊀_ : Rel Queue b |
| 64 | + q' ⊀ q = ¬ (q' ≺ q) |
| 65 | + |
| 66 | + Empty⇒⊀ : ∀ {q} → Empty q → (∀ q' → q' ⊀ q) |
| 67 | + Empty⇒⊀ {q} ≡nothing q' ≡just = just≢nothing $ begin |
| 68 | + just q' ≡˘⟨ ≡just ⟩ |
| 69 | + deleteMin q ≡⟨ P.cong (Maybe.map proj₂) ≡nothing ⟩ |
| 70 | + nothing ∎ |
| 71 | + where open P.≡-Reasoning |
| 72 | + |
| 73 | + |
| 74 | +record SizeLaws {b ℓ} (rawPriorityQueue : RawPriorityQueue b ℓ) : Set (a ⊔ b) where |
| 75 | + open RawPriorityQueue rawPriorityQueue |
| 76 | + |
| 77 | + field |
| 78 | + Empty⇒size≡0 : ∀ q → Empty q → size q ≡ 0 |
| 79 | + ≺-size : ∀ q q' → q' ≺ q → size q ≡ 1 + size q' |
| 80 | + size-empty : size empty ≡ 0 |
| 81 | + size-insert : ∀ x q → size (insert x q) ≡ 1 + size q |
| 82 | + size-meld : ∀ q₁ q₂ → size (meld q₁ q₂) ≡ size q₁ + size q₂ |
| 83 | + |
| 84 | + size≡0⇒Empty : ∀ q → size q ≡ 0 → Empty q |
| 85 | + size≡0⇒Empty q #q≡0 with popMin q in eq |
| 86 | + ... | nothing = P.refl |
| 87 | + ... | just (x , q') = ⊥-elim ∘ 0≢1+n $ begin |
| 88 | + 0 ≡˘⟨ #q≡0 ⟩ |
| 89 | + size q ≡⟨ ≺-size q q' (P.cong (Maybe.map proj₂) eq) ⟩ |
| 90 | + 1 + size q' ∎ |
| 91 | + where open P.≡-Reasoning |
| 92 | + |
| 93 | + ≺-wellFounded : WellFounded _≺_ |
| 94 | + ≺-wellFounded = λ q → Size⇒Acc _ q P.refl |
| 95 | + where |
| 96 | + Size⇒Acc : ∀ n q → size q ≡ n → Acc _≺_ q |
| 97 | + Size⇒Acc zero q #q≡0 = acc λ q' q'≺q → |
| 98 | + ⊥-elim (Empty⇒⊀ (size≡0⇒Empty q #q≡0) q' q'≺q) |
| 99 | + Size⇒Acc (suc m) q #q≡n = acc λ q' q'≺q → |
| 100 | + Size⇒Acc m q' ∘ suc-injective $ begin |
| 101 | + 1 + size q' ≡˘⟨ ≺-size q q' q'≺q ⟩ |
| 102 | + size q ≡⟨ #q≡n ⟩ |
| 103 | + 1 + m ∎ |
| 104 | + where open P.≡-Reasoning |
| 105 | + |
| 106 | + toListAux : ∀ q → @0 Acc _≺_ q → List A |
| 107 | + toListAux q (acc rs) with popMin q |
| 108 | + ... | nothing = [] |
| 109 | + ... | just (x , q') = x ∷ toListAux q' (rs q' P.refl) |
| 110 | + |
| 111 | + toList : Queue → List A |
| 112 | + toList q = toListAux q (≺-wellFounded q) |
| 113 | + |
| 114 | + |
| 115 | +record ElementLaws |
| 116 | + {b ℓ} |
| 117 | + (rawPriorityQueue : RawPriorityQueue b ℓ) |
| 118 | + (sizeLaws : SizeLaws rawPriorityQueue) |
| 119 | + : Set (a ⊔ b ⊔ ℓ₂) where |
| 120 | + |
| 121 | + open RawPriorityQueue rawPriorityQueue |
| 122 | + open SizeLaws sizeLaws |
| 123 | + |
| 124 | + field |
| 125 | + toList-insert : ∀ q x → toList (insert x q) ↭ x ∷ toList q |
| 126 | + toList-meld : ∀ q₁ q₂ → toList (meld q₁ q₂) ↭ toList q₁ ++ toList q₂ |
| 127 | + toList-FindMin : ∀ q x → FindMin q x → All (x ≤_) (toList q) |
| 128 | + |
| 129 | + |
| 130 | +record PriorityQueue b ℓ : Set (a ⊔ ℓ-suc (b ⊔ ℓ) ⊔ ℓ₂) where |
| 131 | + field |
| 132 | + rawPriorityQueue : RawPriorityQueue b ℓ |
| 133 | + sizeLaws : SizeLaws rawPriorityQueue |
| 134 | + elementLaws : ElementLaws rawPriorityQueue sizeLaws |
| 135 | + |
| 136 | + open RawPriorityQueue rawPriorityQueue public |
| 137 | + open SizeLaws sizeLaws public |
| 138 | + open ElementLaws elementLaws public |
0 commit comments