diff --git a/src/Codata/Sized/Delay.agda b/src/Codata/Sized/Delay.agda index b4549089e7..4219bae341 100644 --- a/src/Codata/Sized/Delay.agda +++ b/src/Codata/Sized/Delay.agda @@ -16,9 +16,9 @@ open import Data.Empty open import Relation.Nullary open import Data.Nat.Base open import Data.Maybe.Base hiding (map ; fromMaybe ; zipWith ; alignWith ; zip ; align) -open import Data.Product.Base as P hiding (map ; zip) -open import Data.Sum.Base as S hiding (map) -open import Data.These.Base as T using (These; this; that; these) +open import Data.Product.Base hiding (map ; zip) +open import Data.Sum.Base hiding (map) +open import Data.These.Base using (These; this; that; these) open import Function.Base using (id) ------------------------------------------------------------------------ diff --git a/src/Data/Container/Combinator.agda b/src/Data/Container/Combinator.agda index 01e102cd5c..3d73977470 100644 --- a/src/Data/Container/Combinator.agda +++ b/src/Data/Container/Combinator.agda @@ -10,8 +10,8 @@ module Data.Container.Combinator where open import Level using (Level; _⊔_; lower) open import Data.Empty.Polymorphic using (⊥; ⊥-elim) -open import Data.Product.Base as P using (_,_; <_,_>; proj₁; proj₂; ∃) -open import Data.Sum.Base as S using ([_,_]′) +open import Data.Product.Base as Product using (_,_; <_,_>; proj₁; proj₂; ∃) +open import Data.Sum.Base as Sum using ([_,_]′) open import Data.Unit.Polymorphic.Base using (⊤) import Function.Base as F @@ -58,10 +58,10 @@ module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s _∘_ .Position = ◇ C₁ (Position C₂) to-∘ : ∀ {a} {A : Set a} → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) → ⟦ _∘_ ⟧ A - to-∘ (s , f) = ((s , proj₁ F.∘ f) , P.uncurry (proj₂ F.∘ f) F.∘′ ◇.proof) + to-∘ (s , f) = ((s , proj₁ F.∘ f) , Product.uncurry (proj₂ F.∘ f) F.∘′ ◇.proof) from-∘ : ∀ {a} {A : Set a} → ⟦ _∘_ ⟧ A → ⟦ C₁ ⟧ (⟦ C₂ ⟧ A) - from-∘ ((s , f) , g) = (s , < f , P.curry (g F.∘′ any) >) + from-∘ ((s , f) , g) = (s , < f , Product.curry (g F.∘′ any) >) -- Product. (Note that, up to isomorphism, this is a special case of -- indexed product.) @@ -69,14 +69,14 @@ module _ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s infixr 2 _×_ _×_ : Container (s₁ ⊔ s₂) (p₁ ⊔ p₂) - _×_ .Shape = Shape C₁ P.× Shape C₂ - _×_ .Position = P.uncurry λ s₁ s₂ → (Position C₁ s₁) S.⊎ (Position C₂ s₂) + _×_ .Shape = Shape C₁ Product.× Shape C₂ + _×_ .Position = Product.uncurry λ s₁ s₂ → (Position C₁ s₁) Sum.⊎ (Position C₂ s₂) - to-× : ∀ {a} {A : Set a} → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A → ⟦ _×_ ⟧ A + to-× : ∀ {a} {A : Set a} → ⟦ C₁ ⟧ A Product.× ⟦ C₂ ⟧ A → ⟦ _×_ ⟧ A to-× ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′) - from-× : ∀ {a} {A : Set a} → ⟦ _×_ ⟧ A → ⟦ C₁ ⟧ A P.× ⟦ C₂ ⟧ A - from-× ((s₁ , s₂) , f) = ((s₁ , f F.∘ S.inj₁) , (s₂ , f F.∘ S.inj₂)) + from-× : ∀ {a} {A : Set a} → ⟦ _×_ ⟧ A → ⟦ C₁ ⟧ A Product.× ⟦ C₂ ⟧ A + from-× ((s₁ , s₂) , f) = ((s₁ , f F.∘ Sum.inj₁) , (s₂ , f F.∘ Sum.inj₂)) -- Indexed product. @@ -87,7 +87,7 @@ module _ {i s p} (I : Set i) (Cᵢ : I → Container s p) where Π .Position = λ s → ∃ λ i → Position (Cᵢ i) (s i) to-Π : ∀ {a} {A : Set a} → (∀ i → ⟦ Cᵢ i ⟧ A) → ⟦ Π ⟧ A - to-Π f = (proj₁ F.∘ f , P.uncurry (proj₂ F.∘ f)) + to-Π f = (proj₁ F.∘ f , Product.uncurry (proj₂ F.∘ f)) from-Π : ∀ {a} {A : Set a} → ⟦ Π ⟧ A → ∀ i → ⟦ Cᵢ i ⟧ A from-Π (s , f) = λ i → (s i , λ p → f (i , p)) @@ -108,15 +108,15 @@ module _ {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where infixr 1 _⊎_ _⊎_ : Container (s₁ ⊔ s₂) p - _⊎_ .Shape = (Shape C₁ S.⊎ Shape C₂) + _⊎_ .Shape = (Shape C₁ Sum.⊎ Shape C₂) _⊎_ .Position = [ Position C₁ , Position C₂ ]′ - to-⊎ : ∀ {a} {A : Set a} → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A → ⟦ _⊎_ ⟧ A - to-⊎ = [ P.map S.inj₁ F.id , P.map S.inj₂ F.id ]′ + to-⊎ : ∀ {a} {A : Set a} → ⟦ C₁ ⟧ A Sum.⊎ ⟦ C₂ ⟧ A → ⟦ _⊎_ ⟧ A + to-⊎ = [ Product.map Sum.inj₁ F.id , Product.map Sum.inj₂ F.id ]′ - from-⊎ : ∀ {a} {A : Set a} → ⟦ _⊎_ ⟧ A → ⟦ C₁ ⟧ A S.⊎ ⟦ C₂ ⟧ A - from-⊎ (S.inj₁ s₁ , f) = S.inj₁ (s₁ , f) - from-⊎ (S.inj₂ s₂ , f) = S.inj₂ (s₂ , f) + from-⊎ : ∀ {a} {A : Set a} → ⟦ _⊎_ ⟧ A → ⟦ C₁ ⟧ A Sum.⊎ ⟦ C₂ ⟧ A + from-⊎ (Sum.inj₁ s₁ , f) = Sum.inj₁ (s₁ , f) + from-⊎ (Sum.inj₂ s₂ , f) = Sum.inj₂ (s₂ , f) -- Indexed sum. diff --git a/src/Data/Container/Combinator/Properties.agda b/src/Data/Container/Combinator/Properties.agda index f4b9568eb2..13823bef75 100644 --- a/src/Data/Container/Combinator/Properties.agda +++ b/src/Data/Container/Combinator/Properties.agda @@ -13,7 +13,7 @@ open import Data.Container.Core open import Data.Container.Combinator open import Data.Container.Relation.Unary.Any open import Data.Empty using (⊥-elim) -open import Data.Product.Base as Prod using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry) +open import Data.Product.Base as P using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry) open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_]) open import Function.Base as F using (_∘′_) open import Function.Bundles @@ -45,7 +45,7 @@ module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Co module Product (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where - correct : ∀ {x} {X : Set x} → ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X) + correct : ∀ {x} {X : Set x} → ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X P.× ⟦ C₂ ⟧ X) correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ → refl) from∘to where from∘to : (to-× C₁ C₂) F.∘ (from-× C₁ C₂) ≗ F.id