forked from IIEKES/MLM_transfer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattn_cls_wd.py
157 lines (128 loc) · 5.51 KB
/
attn_cls_wd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch.nn as nn
import torch.optim as optim
import torch
from utils import read_data, save_cls, load_cls
from rnnattn_wd import RNNAttnCls
import os
import copy
from tqdm import tqdm
import numpy as np
from sklearn.utils import shuffle
from torch.autograd import Variable
import argparse
import json
with open("run.config", 'rb') as f:
configs_dict = json.load(f)
model_name = configs_dict.get("model_name")
task_name = configs_dict.get("task_name")
modified = configs_dict.get("modified")
def test(data, model, mode="test"):
model.eval()
if mode == "dev":
x, y = data["dev_x"], data["dev_y"]
elif mode == "test":
x, y = data["test_x"], data["test_y"]
x = [sent for sent in x]
y = [data["classes"].index(c) for c in y]
pred, attn = model(x)
pred = np.argmax(pred.cpu().data.numpy(), axis=1)
acc = sum([1 if p == y else 0 for p, y in zip(pred, y)]) / len(pred)
return acc
def train(data, params):
model = RNNAttnCls(**params).cuda(params["GPU"])
parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.Adam(parameters, params["LEARNING_RATE"])
criterion = nn.CrossEntropyLoss()
max_dev_acc = 0
max_test_acc = 0
for e in tqdm(range(params["EPOCH"])):
data["train_x"], data["train_y"] = shuffle(data["train_x"], data["train_y"])
tot_loss = 0
cnt = 0
for i in range(0, len(data["train_x"]), params["BATCH_SIZE"]):
batch_range = min(params["BATCH_SIZE"], len(data["train_x"]) - i)
batch_x = [sent for sent in data["train_x"][i:i + batch_range]]
batch_y = [data["classes"].index(c) for c in data["train_y"][i:i + batch_range]]
batch_y = Variable(torch.LongTensor(batch_y)).cuda(params["GPU"])
optimizer.zero_grad()
model.train()
pred, attn = model(batch_x)
loss = criterion(pred, batch_y)
loss.backward()
nn.utils.clip_grad_norm(parameters, max_norm=params["NORM_LIMIT"])
optimizer.step()
tot_loss += loss.item()
cnt += 1
if cnt % 1000 == 0:
print(tot_loss / cnt)
tot_loss = 0
cnt = 0
dev_acc = test(data, model, mode="dev")
test_acc = test(data, model)
print("epoch:", e + 1, "/ dev_acc:", dev_acc, "/ test_acc:", test_acc)
# if params["EARLY_STOPPING"] and dev_acc <= pre_dev_acc:
# print("early stopping by dev_acc!")
# break
# else:
# pre_dev_acc = dev_acc
if dev_acc > max_dev_acc:
max_dev_acc = dev_acc
max_test_acc = test_acc
best_model = copy.deepcopy(model)
print("max dev acc:", max_dev_acc, "test acc:", max_test_acc)
return best_model
def main():
parser = argparse.ArgumentParser(description="-----[RNN-Attention-classifier]-----")
parser.add_argument("--mode", default="train", help="train: train (with test) a model / test: test saved models")
parser.add_argument("--model", default="non-static",
help="available models: rand, static, non-static, multichannel")
parser.add_argument("--dataset", default="data", help="available datasets: MR, TREC")
parser.add_argument("--save_model", default=True, action='store_true', help="whether saving model or not")
parser.add_argument("--early_stopping", default=False, action='store_true', help="whether to apply early stopping")
parser.add_argument("--epoch", default=20, type=int, help="number of max epoch")
parser.add_argument("--learning_rate", default=0.001, type=float, help="learning rate")
parser.add_argument("--gpu", default=0, type=int, help="the index of gpu to be used")
options = parser.parse_args()
if options.mode == "train":
data, label_cnt = read_data(dir="raw_data/{}".format(task_name), train="train", dev="dev", test="test")
else:
data, label_cnt = read_data(dir="raw_data/{}".format(task_name), test="test")
print(label_cnt)
data["classes"] = sorted(list(set(data["train_y"])))
params = {
"MODEL": options.model,
"DATASET": options.dataset,
"SAVE_MODEL": options.save_model,
"EARLY_STOPPING": options.early_stopping,
"EPOCH": options.epoch,
"LEARNING_RATE": options.learning_rate,
# "MAX_SENT_LEN": max([len(sent) for sent in data["train_x"] + data["dev_x"] + data["test_x"]]),
"MAX_SENT_LEN": 32,
"BATCH_SIZE": 50,
"CLASS_SIZE": len(data["classes"]),
"DROPOUT_PROB": 0.5,
"NORM_LIMIT": 3,
"GPU": options.gpu,
"H_DIM":32
}
print("=" * 20 + "INFORMATION" + "=" * 20)
print("MODEL:", params["MODEL"])
print("DATASET:", params["DATASET"])
print("EPOCH:", params["EPOCH"])
print("LEARNING_RATE:", params["LEARNING_RATE"])
print("EARLY_STOPPING:", params["EARLY_STOPPING"])
print("SAVE_MODEL:", params["SAVE_MODEL"])
print("=" * 20 + "INFORMATION" + "=" * 20)
if options.mode == "train":
print("=" * 20 + "TRAINING STARTED" + "=" * 20)
model = train(data, params)
if params["SAVE_MODEL"]:
save_cls(model, task_name, "attn.{}".format(model_name))
# save_vocab(data["vocab"], task_name, model_name)
print("=" * 20 + "TRAINING FINISHED" + "=" * 20)
else:
model = load_cls(task_name, model_name).cuda(params["GPU"])
test_acc = test(data, model, params)
print("test acc:", test_acc)
if __name__ == "__main__":
main()