@@ -122,12 +122,14 @@ View the models found by auto-sklearn
122
122
123
123
.. code-block :: none
124
124
125
- rank ensemble_weight type cost duration
126
- model_id
127
- 31 1 0.54 ard_regression 0.428169 0.910553
128
- 25 2 0.24 sgd 0.436679 0.777051
129
- 29 3 0.18 ard_regression 0.493390 0.759394
130
- 7 4 0.04 gradient_boosting 0.518673 1.351315
125
+ rank ensemble_weight type cost duration
126
+ model_id
127
+ 25 1 0.46 sgd 0.436679 0.682268
128
+ 29 2 0.04 gaussian_process 0.445373 13.078738
129
+ 6 3 0.30 ard_regression 0.455042 0.696445
130
+ 27 4 0.12 ard_regression 0.462249 0.678429
131
+ 11 5 0.02 random_forest 0.507400 9.128839
132
+ 7 6 0.06 gradient_boosting 0.518673 1.157540
131
133
132
134
133
135
@@ -154,9 +156,74 @@ Print the final ensemble constructed by auto-sklearn
154
156
155
157
.. code-block :: none
156
158
157
- /home/runner/work/auto-sklearn/auto-sklearn/autosklearn/automl.py:2152: UserWarning: No models in the ensemble. Kindly provide an ensemble class.
158
- warnings.warn(
159
- {}
159
+ { 6: { 'cost': 0.4550418898836528,
160
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4b698310>,
161
+ 'ensemble_weight': 0.3,
162
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a87edc0>,
163
+ 'model_id': 6,
164
+ 'rank': 1,
165
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a87e2b0>,
166
+ 'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
167
+ copy_X=False, lambda_1=1.2037591637980971e-06,
168
+ lambda_2=4.358378124977852e-09,
169
+ threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
170
+ 7: { 'cost': 0.5186726734789994,
171
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4a10c130>,
172
+ 'ensemble_weight': 0.06,
173
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4de46130>,
174
+ 'model_id': 7,
175
+ 'rank': 2,
176
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4de46bb0>,
177
+ 'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
178
+ learning_rate=0.012607824914758717, max_iter=512,
179
+ max_leaf_nodes=10, min_samples_leaf=8,
180
+ n_iter_no_change=0, random_state=1,
181
+ validation_fraction=None, warm_start=True)},
182
+ 11: { 'cost': 0.5073997164657239,
183
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50068550>,
184
+ 'ensemble_weight': 0.02,
185
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe633f2ca0>,
186
+ 'model_id': 11,
187
+ 'rank': 3,
188
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe633f29a0>,
189
+ 'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
190
+ max_features=0.6277363920171745, min_samples_leaf=6,
191
+ min_samples_split=15, n_estimators=512, n_jobs=1,
192
+ random_state=1, warm_start=True)},
193
+ 25: { 'cost': 0.43667876507897496,
194
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50688f70>,
195
+ 'ensemble_weight': 0.46,
196
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a9a55e0>,
197
+ 'model_id': 25,
198
+ 'rank': 4,
199
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a9a5430>,
200
+ 'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
201
+ eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
202
+ loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
203
+ power_t=0.21521743568582094, random_state=1,
204
+ tol=0.002431731981071206, warm_start=True)},
205
+ 27: { 'cost': 0.4622486119001967,
206
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe500a31c0>,
207
+ 'ensemble_weight': 0.12,
208
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a0e5550>,
209
+ 'model_id': 27,
210
+ 'rank': 5,
211
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a0e54f0>,
212
+ 'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
213
+ copy_X=False, lambda_1=6.50650698230178e-09,
214
+ lambda_2=4.238533890074848e-07,
215
+ threshold_lambda=78251.58542976103, tol=0.0007301343236220855)},
216
+ 29: { 'cost': 0.44537254042256413,
217
+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4de625e0>,
218
+ 'ensemble_weight': 0.04,
219
+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a34a2e0>,
220
+ 'model_id': 29,
221
+ 'rank': 6,
222
+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a34a520>,
223
+ 'sklearn_regressor': GaussianProcessRegressor(alpha=0.323250809620855,
224
+ kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
225
+ n_restarts_optimizer=10, normalize_y=True,
226
+ random_state=1)}}
160
227
161
228
162
229
@@ -190,8 +257,8 @@ predicting the data mean has an R2 score of 0.
190
257
191
258
.. code-block :: none
192
259
193
- Train R2 score: 0.5891379293923084
194
- Test R2 score: 0.3966515401967873
260
+ Train R2 score: 0.5965240258552345
261
+ Test R2 score: 0.39560603803897343
195
262
196
263
197
264
@@ -236,7 +303,7 @@ the true value).
236
303
237
304
.. rst-class :: sphx-glr-timing
238
305
239
- **Total running time of the script: ** ( 1 minutes 59.783 seconds)
306
+ **Total running time of the script: ** ( 1 minutes 59.300 seconds)
240
307
241
308
242
309
.. _sphx_glr_download_examples_20_basic_example_regression.py :
0 commit comments