Skip to content

Commit 0650e81

Browse files
author
Github Actions
committed
Eddie Bergman: Fix prediction fails with MOO ensemble and dummy is best (#1518)
1 parent 218b908 commit 0650e81

File tree

75 files changed

+7220
-2436
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

75 files changed

+7220
-2436
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

development/_sources/examples/20_basic/example_classification.rst.txt

Lines changed: 324 additions & 28 deletions
Large diffs are not rendered by default.

development/_sources/examples/20_basic/example_multilabel_classification.rst.txt

Lines changed: 12 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,7 @@ View the models found by auto-sklearn
155155
156156
rank ensemble_weight type cost duration
157157
model_id
158-
2 1 1.0 random_forest 0.447294 3.712529
158+
2 1 1.0 random_forest 0.447294 3.239878
159159
160160
161161
@@ -182,9 +182,16 @@ Print the final ensemble constructed by auto-sklearn
182182

183183
.. code-block:: none
184184
185-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/automl.py:2152: UserWarning: No models in the ensemble. Kindly provide an ensemble class.
186-
warnings.warn(
187-
{}
185+
{ 2: { 'balancing': Balancing(random_state=1),
186+
'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fbe500c3fa0>,
187+
'cost': 0.4472941828699525,
188+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4aaaad00>,
189+
'ensemble_weight': 1.0,
190+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe500c3280>,
191+
'model_id': 2,
192+
'rank': 1,
193+
'sklearn_classifier': RandomForestClassifier(max_features=15, n_estimators=512, n_jobs=1,
194+
random_state=1, warm_start=True)}}
188195
189196
190197
@@ -257,7 +264,7 @@ Get the Score of the final ensemble
257264
258265
.. rst-class:: sphx-glr-timing
259266

260-
**Total running time of the script:** ( 0 minutes 24.663 seconds)
267+
**Total running time of the script:** ( 0 minutes 32.104 seconds)
261268

262269

263270
.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:

development/_sources/examples/20_basic/example_multioutput_regression.rst.txt

Lines changed: 16 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -123,10 +123,9 @@ View the models found by auto-sklearn
123123

124124
.. code-block:: none
125125
126-
rank ensemble_weight type cost duration
127-
model_id
128-
2 1 0.96 random_forest 0.109310 2.524796
129-
18 2 0.04 random_forest 0.157617 27.725271
126+
rank ensemble_weight type cost duration
127+
model_id
128+
28 1 1.0 gaussian_process 1.718292e-08 3.467824
130129
131130
132131
@@ -153,9 +152,17 @@ Print the final ensemble constructed by auto-sklearn
153152

154153
.. code-block:: none
155154
156-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/automl.py:2152: UserWarning: No models in the ensemble. Kindly provide an ensemble class.
157-
warnings.warn(
158-
{}
155+
{ 28: { 'cost': 1.71829196426998e-08,
156+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4fe3f970>,
157+
'ensemble_weight': 1.0,
158+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4fe8ee80>,
159+
'model_id': 28,
160+
'rank': 1,
161+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe50675820>,
162+
'sklearn_regressor': GaussianProcessRegressor(alpha=1.0000000000000018e-08,
163+
kernel=RBF(length_scale=[1, 1, 1, 1, 1]),
164+
n_restarts_optimizer=10, normalize_y=True,
165+
random_state=1)}}
159166
160167
161168
@@ -183,7 +190,7 @@ Get the Score of the final ensemble
183190

184191
.. code-block:: none
185192
186-
R2 score: 0.8771877459908536
193+
R2 score: 0.9999998896841648
187194
188195
189196
@@ -436,7 +443,7 @@ Get the configuration space
436443
437444
.. rst-class:: sphx-glr-timing
438445

439-
**Total running time of the script:** ( 1 minutes 54.937 seconds)
446+
**Total running time of the script:** ( 1 minutes 55.016 seconds)
440447

441448

442449
.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:

development/_sources/examples/20_basic/example_regression.rst.txt

Lines changed: 79 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -122,12 +122,14 @@ View the models found by auto-sklearn
122122

123123
.. code-block:: none
124124
125-
rank ensemble_weight type cost duration
126-
model_id
127-
31 1 0.54 ard_regression 0.428169 0.910553
128-
25 2 0.24 sgd 0.436679 0.777051
129-
29 3 0.18 ard_regression 0.493390 0.759394
130-
7 4 0.04 gradient_boosting 0.518673 1.351315
125+
rank ensemble_weight type cost duration
126+
model_id
127+
25 1 0.46 sgd 0.436679 0.682268
128+
29 2 0.04 gaussian_process 0.445373 13.078738
129+
6 3 0.30 ard_regression 0.455042 0.696445
130+
27 4 0.12 ard_regression 0.462249 0.678429
131+
11 5 0.02 random_forest 0.507400 9.128839
132+
7 6 0.06 gradient_boosting 0.518673 1.157540
131133
132134
133135
@@ -154,9 +156,74 @@ Print the final ensemble constructed by auto-sklearn
154156

155157
.. code-block:: none
156158
157-
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/automl.py:2152: UserWarning: No models in the ensemble. Kindly provide an ensemble class.
158-
warnings.warn(
159-
{}
159+
{ 6: { 'cost': 0.4550418898836528,
160+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4b698310>,
161+
'ensemble_weight': 0.3,
162+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a87edc0>,
163+
'model_id': 6,
164+
'rank': 1,
165+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a87e2b0>,
166+
'sklearn_regressor': ARDRegression(alpha_1=0.0003701926442639788, alpha_2=2.2118001735899097e-07,
167+
copy_X=False, lambda_1=1.2037591637980971e-06,
168+
lambda_2=4.358378124977852e-09,
169+
threshold_lambda=1136.5286041327277, tol=0.021944240404849075)},
170+
7: { 'cost': 0.5186726734789994,
171+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4a10c130>,
172+
'ensemble_weight': 0.06,
173+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4de46130>,
174+
'model_id': 7,
175+
'rank': 2,
176+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4de46bb0>,
177+
'sklearn_regressor': HistGradientBoostingRegressor(l2_regularization=1.8428972335335263e-10,
178+
learning_rate=0.012607824914758717, max_iter=512,
179+
max_leaf_nodes=10, min_samples_leaf=8,
180+
n_iter_no_change=0, random_state=1,
181+
validation_fraction=None, warm_start=True)},
182+
11: { 'cost': 0.5073997164657239,
183+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50068550>,
184+
'ensemble_weight': 0.02,
185+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe633f2ca0>,
186+
'model_id': 11,
187+
'rank': 3,
188+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe633f29a0>,
189+
'sklearn_regressor': RandomForestRegressor(bootstrap=False, criterion='mae',
190+
max_features=0.6277363920171745, min_samples_leaf=6,
191+
min_samples_split=15, n_estimators=512, n_jobs=1,
192+
random_state=1, warm_start=True)},
193+
25: { 'cost': 0.43667876507897496,
194+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe50688f70>,
195+
'ensemble_weight': 0.46,
196+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a9a55e0>,
197+
'model_id': 25,
198+
'rank': 4,
199+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a9a5430>,
200+
'sklearn_regressor': SGDRegressor(alpha=0.0006517033225329654, epsilon=0.012150149892783745,
201+
eta0=0.016444224834275295, l1_ratio=1.7462342366289323e-09,
202+
loss='epsilon_insensitive', max_iter=16, penalty='elasticnet',
203+
power_t=0.21521743568582094, random_state=1,
204+
tol=0.002431731981071206, warm_start=True)},
205+
27: { 'cost': 0.4622486119001967,
206+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe500a31c0>,
207+
'ensemble_weight': 0.12,
208+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a0e5550>,
209+
'model_id': 27,
210+
'rank': 5,
211+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a0e54f0>,
212+
'sklearn_regressor': ARDRegression(alpha_1=2.7664515192592053e-05, alpha_2=9.504988116581138e-07,
213+
copy_X=False, lambda_1=6.50650698230178e-09,
214+
lambda_2=4.238533890074848e-07,
215+
threshold_lambda=78251.58542976103, tol=0.0007301343236220855)},
216+
29: { 'cost': 0.44537254042256413,
217+
'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fbe4de625e0>,
218+
'ensemble_weight': 0.04,
219+
'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fbe4a34a2e0>,
220+
'model_id': 29,
221+
'rank': 6,
222+
'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7fbe4a34a520>,
223+
'sklearn_regressor': GaussianProcessRegressor(alpha=0.323250809620855,
224+
kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
225+
n_restarts_optimizer=10, normalize_y=True,
226+
random_state=1)}}
160227
161228
162229
@@ -190,8 +257,8 @@ predicting the data mean has an R2 score of 0.
190257

191258
.. code-block:: none
192259
193-
Train R2 score: 0.5891379293923084
194-
Test R2 score: 0.3966515401967873
260+
Train R2 score: 0.5965240258552345
261+
Test R2 score: 0.39560603803897343
195262
196263
197264
@@ -236,7 +303,7 @@ the true value).
236303

237304
.. rst-class:: sphx-glr-timing
238305

239-
**Total running time of the script:** ( 1 minutes 59.783 seconds)
306+
**Total running time of the script:** ( 1 minutes 59.300 seconds)
240307

241308

242309
.. _sphx_glr_download_examples_20_basic_example_regression.py:

development/_sources/examples/20_basic/sg_execution_times.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -5,14 +5,14 @@
55

66
Computation times
77
=================
8-
**06:19.631** total execution time for **examples_20_basic** files:
8+
**06:24.818** total execution time for **examples_20_basic** files:
99

1010
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 02:00.249 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:59.300 | 0.0 MB |
1212
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basic_example_regression.py` (``example_regression.py``) | 01:59.783 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basic_example_classification.py` (``example_classification.py``) | 01:58.398 | 0.0 MB |
1414
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:54.937 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basic_example_multioutput_regression.py` (``example_multioutput_regression.py``) | 01:55.016 | 0.0 MB |
1616
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+
17-
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:24.663 | 0.0 MB |
17+
| :ref:`sphx_glr_examples_20_basic_example_multilabel_classification.py` (``example_multilabel_classification.py``) | 00:32.104 | 0.0 MB |
1818
+-------------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)