@@ -146,8 +146,8 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
146
146
< span class ="n "> max_models_on_disc</ span > < span class ="o "> =</ span > < span class ="mi "> 50</ span > < span class ="p "> ,</ span >
147
147
< span class ="n "> seed</ span > < span class ="o "> =</ span > < span class ="mi "> 1</ span > < span class ="p "> ,</ span >
148
148
< span class ="n "> memory_limit</ span > < span class ="o "> =</ span > < span class ="mi "> 3072</ span > < span class ="p "> ,</ span >
149
- < span class ="n "> include</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
150
- < span class ="n "> exclude</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
149
+ < span class ="n "> include</ span > < span class ="p " > : </ span > < span class =" n " > Optional </ span > < span class =" p " > [ </ span > < span class =" n " > Dict </ span > < span class =" p " > [ </ span > < span class =" nb " > str </ span > < span class =" p " > , </ span > < span class =" n " > List </ span > < span class =" p " > [ </ span > < span class =" nb " > str </ span > < span class =" p " > ]]] </ span > < span class =" o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
150
+ < span class ="n "> exclude</ span > < span class ="p " > : </ span > < span class =" n " > Optional </ span > < span class =" p " > [ </ span > < span class =" n " > Dict </ span > < span class =" p " > [ </ span > < span class =" nb " > str </ span > < span class =" p " > , </ span > < span class =" n " > List </ span > < span class =" p " > [ </ span > < span class =" nb " > str </ span > < span class =" p " > ]]] </ span > < span class =" o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
151
151
< span class ="n "> resampling_strategy</ span > < span class ="o "> =</ span > < span class ="s1 "> 'holdout'</ span > < span class ="p "> ,</ span >
152
152
< span class ="n "> resampling_strategy_arguments</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
153
153
< span class ="n "> tmp_folder</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
@@ -209,24 +209,63 @@ <h1>Source code for autosklearn.estimators</h1><div class="highlight"><pre>
209
209
< span class ="sd "> Memory limit in MB for the machine learning algorithm.</ span >
210
210
< span class ="sd "> `auto-sklearn` will stop fitting the machine learning algorithm if</ span >
211
211
< span class ="sd "> it tries to allocate more than ``memory_limit`` MB.</ span >
212
- < span class =" sd " > </ span >
213
- < span class ="sd "> **Important notes:** </ span >
214
- < span class =" sd " > </ span >
212
+
213
+ < span class ="sd "> **Important notes:**</ span >
214
+
215
215
< span class ="sd "> * If ``None`` is provided, no memory limit is set.</ span >
216
- < span class ="sd "> * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is </ span >
216
+ < span class ="sd "> * In case of multi-processing, ``memory_limit`` will be *per job*, so the total usage is</ span >
217
217
< span class ="sd "> ``n_jobs x memory_limit``.</ span >
218
218
< span class ="sd "> * The memory limit also applies to the ensemble creation process.</ span >
219
219
220
- < span class ="sd "> include : dict, optional (None)</ span >
221
- < span class ="sd "> If None, all possible algorithms are used. Otherwise specifies</ span >
222
- < span class ="sd "> set of algorithms for each added component is used. Include and </ span >
223
- < span class ="sd "> exclude are incompatible if used together on the same component</ span >
220
+ < span class ="sd "> include : Optional[Dict[str, List[str]]] = None</ span >
221
+ < span class ="sd "> If None, all possible algorithms are used.</ span >
222
+
223
+ < span class ="sd "> Otherwise, specifies a step and the components that are included in search.</ span >
224
+ < span class ="sd "> See ``/pipeline/components/<step>/*`` for available components.</ span >
225
+
226
+ < span class ="sd "> Incompatible with parameter ``exclude``.</ span >
227
+
228
+ < span class ="sd "> **Possible Steps**:</ span >
229
+
230
+ < span class ="sd "> * ``"data_preprocessor"``</ span >
231
+ < span class ="sd "> * ``"balancing"``</ span >
232
+ < span class ="sd "> * ``"feature_preprocessor"``</ span >
233
+ < span class ="sd "> * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier``</ span >
234
+ < span class ="sd "> * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor``</ span >
235
+
236
+ < span class ="sd "> **Example**:</ span >
237
+
238
+ < span class ="sd "> .. code-block:: python</ span >
239
+
240
+ < span class ="sd "> include = {</ span >
241
+ < span class ="sd "> 'classifier': ["random_forest"],</ span >
242
+ < span class ="sd "> 'feature_preprocessor': ["no_preprocessing"]</ span >
243
+ < span class ="sd "> }</ span >
244
+
245
+ < span class ="sd "> exclude : Optional[Dict[str, List[str]]] = None</ span >
246
+ < span class ="sd "> If None, all possible algorithms are used.</ span >
247
+
248
+ < span class ="sd "> Otherwise, specifies a step and the components that are excluded from search.</ span >
249
+ < span class ="sd "> See ``/pipeline/components/<step>/*`` for available components.</ span >
250
+
251
+ < span class ="sd "> Incompatible with parameter ``include``.</ span >
252
+
253
+ < span class ="sd "> **Possible Steps**:</ span >
254
+
255
+ < span class ="sd "> * ``"data_preprocessor"``</ span >
256
+ < span class ="sd "> * ``"balancing"``</ span >
257
+ < span class ="sd "> * ``"feature_preprocessor"``</ span >
258
+ < span class ="sd "> * ``"classifier"`` - Only for when when using ``AutoSklearnClasssifier``</ span >
259
+ < span class ="sd "> * ``"regressor"`` - Only for when when using ``AutoSklearnRegressor``</ span >
260
+
261
+ < span class ="sd "> **Example**:</ span >
262
+
263
+ < span class ="sd "> .. code-block:: python</ span >
224
264
225
- < span class ="sd "> exclude : dict, optional (None)</ span >
226
- < span class ="sd "> If None, all possible algorithms are used. Otherwise specifies</ span >
227
- < span class ="sd "> set of algorithms for each added component is not used.</ span >
228
- < span class ="sd "> Incompatible with include. Include and exclude are incompatible</ span >
229
- < span class ="sd "> if used together on the same component</ span >
265
+ < span class ="sd "> exclude = {</ span >
266
+ < span class ="sd "> 'classifier': ["random_forest"],</ span >
267
+ < span class ="sd "> 'feature_preprocessor': ["no_preprocessing"]</ span >
268
+ < span class ="sd "> }</ span >
230
269
231
270
< span class ="sd "> resampling_strategy : string or object, optional ('holdout')</ span >
232
271
< span class ="sd "> how to to handle overfitting, might need 'resampling_strategy_arguments'</ span >
0 commit comments