@@ -173,10 +173,10 @@ def test_default_configuration(self):
173
173
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'iris' )
174
174
175
175
auto = SimpleClassificationPipeline (random_state = 1 )
176
-
176
+
177
177
with ignore_warnings (classifier_warnings ):
178
- auto = auto .fit (X_train , Y_train )
179
-
178
+ auto = auto .fit (X_train , Y_train )
179
+
180
180
predictions = auto .predict (X_test )
181
181
182
182
acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -200,8 +200,8 @@ def test_default_configuration_multilabel(self):
200
200
classifier .set_hyperparameters (default )
201
201
202
202
with ignore_warnings (classifier_warnings ):
203
- classifier = classifier .fit (X_train , Y_train )
204
-
203
+ classifier = classifier .fit (X_train , Y_train )
204
+
205
205
predictions = classifier .predict (X_test )
206
206
207
207
acc = sklearn .metrics .accuracy_score (predictions , Y_test )
@@ -227,10 +227,10 @@ def test_default_configuration_iterative_fit(self):
227
227
classifier .fit_transformer (X_train , Y_train )
228
228
229
229
with ignore_warnings (classifier_warnings ):
230
- for i in range (1 , 11 ):
231
- classifier .iterative_fit (X_train , Y_train )
232
- n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
233
- self .assertEqual (n_estimators , i )
230
+ for i in range (1 , 11 ):
231
+ classifier .iterative_fit (X_train , Y_train )
232
+ n_estimators = classifier .steps [- 1 ][- 1 ].choice .estimator .n_estimators
233
+ self .assertEqual (n_estimators , i )
234
234
235
235
def test_repr (self ):
236
236
"""Test that the default pipeline can be converted to its representation and
@@ -856,10 +856,10 @@ def test_predict_proba_batched_sparse(self):
856
856
# Multiclass
857
857
X_train , Y_train , X_test , Y_test = get_dataset (dataset = 'digits' , make_sparse = True )
858
858
X_test_ = X_test .copy ()
859
-
859
+
860
860
with ignore_warnings (classifier_warnings ):
861
861
cls .fit (X_train , Y_train )
862
-
862
+
863
863
prediction_ = cls .predict_proba (X_test_ )
864
864
865
865
# The object behind the last step in the pipeline
@@ -881,10 +881,10 @@ def test_predict_proba_batched_sparse(self):
881
881
882
882
X_test_ = X_test .copy ()
883
883
Y_train = np .array ([[1 if i != y else 0 for i in range (10 )] for y in Y_train ])
884
-
884
+
885
885
with ignore_warnings (classifier_warnings ):
886
886
cls .fit (X_train , Y_train )
887
-
887
+
888
888
prediction_ = cls .predict_proba (X_test_ )
889
889
890
890
# The object behind the last step in the pipeline
0 commit comments