Skip to content

Commit 469cb61

Browse files
committed
Fix github merge conflict editor whitespaces and indents
1 parent e304c4b commit 469cb61

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

test/test_pipeline/test_classification.py

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -173,10 +173,10 @@ def test_default_configuration(self):
173173
X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris')
174174

175175
auto = SimpleClassificationPipeline(random_state=1)
176-
176+
177177
with ignore_warnings(classifier_warnings):
178-
auto = auto.fit(X_train, Y_train)
179-
178+
auto = auto.fit(X_train, Y_train)
179+
180180
predictions = auto.predict(X_test)
181181

182182
acc = sklearn.metrics.accuracy_score(predictions, Y_test)
@@ -200,8 +200,8 @@ def test_default_configuration_multilabel(self):
200200
classifier.set_hyperparameters(default)
201201

202202
with ignore_warnings(classifier_warnings):
203-
classifier = classifier.fit(X_train, Y_train)
204-
203+
classifier = classifier.fit(X_train, Y_train)
204+
205205
predictions = classifier.predict(X_test)
206206

207207
acc = sklearn.metrics.accuracy_score(predictions, Y_test)
@@ -227,10 +227,10 @@ def test_default_configuration_iterative_fit(self):
227227
classifier.fit_transformer(X_train, Y_train)
228228

229229
with ignore_warnings(classifier_warnings):
230-
for i in range(1, 11):
231-
classifier.iterative_fit(X_train, Y_train)
232-
n_estimators = classifier.steps[-1][-1].choice.estimator.n_estimators
233-
self.assertEqual(n_estimators, i)
230+
for i in range(1, 11):
231+
classifier.iterative_fit(X_train, Y_train)
232+
n_estimators = classifier.steps[-1][-1].choice.estimator.n_estimators
233+
self.assertEqual(n_estimators, i)
234234

235235
def test_repr(self):
236236
"""Test that the default pipeline can be converted to its representation and
@@ -856,10 +856,10 @@ def test_predict_proba_batched_sparse(self):
856856
# Multiclass
857857
X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits', make_sparse=True)
858858
X_test_ = X_test.copy()
859-
859+
860860
with ignore_warnings(classifier_warnings):
861861
cls.fit(X_train, Y_train)
862-
862+
863863
prediction_ = cls.predict_proba(X_test_)
864864

865865
# The object behind the last step in the pipeline
@@ -881,10 +881,10 @@ def test_predict_proba_batched_sparse(self):
881881

882882
X_test_ = X_test.copy()
883883
Y_train = np.array([[1 if i != y else 0 for i in range(10)] for y in Y_train])
884-
884+
885885
with ignore_warnings(classifier_warnings):
886886
cls.fit(X_train, Y_train)
887-
887+
888888
prediction_ = cls.predict_proba(X_test_)
889889

890890
# The object behind the last step in the pipeline

0 commit comments

Comments
 (0)