@@ -150,50 +150,51 @@ Get the Score of the final ensemble
150
150
151
151
.. code-block :: none
152
152
153
- Accuracy score 0.958041958041958
153
+ Accuracy score 0.9440559440559441
154
154
################################################################################
155
155
Metric results
156
156
rank_test_scores param_classifier:__choice__ mean_test_score metric_balanced_accuracy metric_precision metric_recall metric_f1 metric_custom_error
157
- 5 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
158
- 5 mlp 0.971631 0.961538 0.956989 1.000000 0.978022 0.028369
159
- 27 mlp 0.943262 0.935069 0.945055 0.966292 0.955556 0.056738
160
- 15 random_forest 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
161
- 5 mlp 0.971631 0.961538 0.956989 1.000000 0.978022 0.028369
157
+ 6 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
158
+ 6 mlp 0.971631 0.961538 0.956989 1.000000 0.978022 0.028369
159
+ 28 mlp 0.943262 0.935069 0.945055 0.966292 0.955556 0.056738
160
+ 16 random_forest 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
161
+ 6 mlp 0.971631 0.961538 0.956989 1.000000 0.978022 0.028369
162
+ 1 extra_trees 0.985816 0.984767 0.988764 0.988764 0.988764 0.014184
163
+ 16 random_forest 0.964539 0.963915 0.977273 0.966292 0.971751 0.035461
164
+ 21 extra_trees 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
165
+ 6 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
166
+ 6 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
167
+ 16 gradient_boosting 0.964539 0.963915 0.977273 0.966292 0.971751 0.035461
168
+ 6 gradient_boosting 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
169
+ 6 mlp 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
170
+ 25 mlp 0.950355 0.948682 0.965909 0.955056 0.960452 0.049645
171
+ 3 gradient_boosting 0.978723 0.975151 0.977778 0.988764 0.983240 0.021277
172
+ 16 gradient_boosting 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
173
+ 16 random_forest 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
174
+ 6 extra_trees 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
175
+ 33 passive_aggressive 0.921986 0.894231 0.890000 1.000000 0.941799 0.078014
176
+ 3 extra_trees 0.978723 0.975151 0.977778 0.988764 0.983240 0.021277
177
+ 6 gradient_boosting 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
178
+ 25 mlp 0.950355 0.940687 0.945652 0.977528 0.961326 0.049645
179
+ 31 random_forest 0.929078 0.923833 0.943820 0.943820 0.943820 0.070922
180
+ 21 adaboost 0.957447 0.950303 0.956044 0.977528 0.966667 0.042553
181
+ 6 extra_trees 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
182
+ 21 extra_trees 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
183
+ 31 bernoulli_nb 0.929078 0.923833 0.943820 0.943820 0.943820 0.070922
184
+ 3 extra_trees 0.978723 0.979149 0.988636 0.977528 0.983051 0.021277
185
+ 21 liblinear_svc 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
186
+ 28 gaussian_nb 0.943262 0.935069 0.945055 0.966292 0.955556 0.056738
187
+ 25 extra_trees 0.950355 0.936690 0.936170 0.988764 0.961749 0.049645
188
+ 28 random_forest 0.943262 0.943064 0.965517 0.943820 0.954545 0.056738
162
189
1 extra_trees 0.985816 0.984767 0.988764 0.988764 0.988764 0.014184
163
- 15 random_forest 0.964539 0.963915 0.977273 0.966292 0.971751 0.035461
164
- 20 extra_trees 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
165
- 5 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
166
- 5 random_forest 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
167
- 15 gradient_boosting 0.964539 0.963915 0.977273 0.966292 0.971751 0.035461
168
- 5 gradient_boosting 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
169
- 5 mlp 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
170
- 24 mlp 0.950355 0.948682 0.965909 0.955056 0.960452 0.049645
171
- 2 gradient_boosting 0.978723 0.975151 0.977778 0.988764 0.983240 0.021277
172
- 15 gradient_boosting 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
173
- 15 random_forest 0.964539 0.959918 0.966667 0.977528 0.972067 0.035461
174
- 5 extra_trees 0.971631 0.969533 0.977528 0.977528 0.977528 0.028369
175
- 32 passive_aggressive 0.921986 0.894231 0.890000 1.000000 0.941799 0.078014
176
- 2 extra_trees 0.978723 0.975151 0.977778 0.988764 0.983240 0.021277
177
- 5 gradient_boosting 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
178
- 24 mlp 0.950355 0.940687 0.945652 0.977528 0.961326 0.049645
179
- 30 random_forest 0.929078 0.923833 0.943820 0.943820 0.943820 0.070922
180
- 20 adaboost 0.957447 0.950303 0.956044 0.977528 0.966667 0.042553
181
- 5 extra_trees 0.971631 0.965536 0.967033 0.988764 0.977778 0.028369
182
- 20 extra_trees 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
183
- 30 bernoulli_nb 0.929078 0.923833 0.943820 0.943820 0.943820 0.070922
184
- 2 extra_trees 0.978723 0.979149 0.988636 0.977528 0.983051 0.021277
185
- 20 liblinear_svc 0.957447 0.954300 0.966292 0.966292 0.966292 0.042553
186
- 27 gaussian_nb 0.943262 0.935069 0.945055 0.966292 0.955556 0.056738
187
- 24 extra_trees 0.950355 0.936690 0.936170 0.988764 0.961749 0.049645
188
- 27 random_forest 0.943262 0.943064 0.965517 0.943820 0.954545 0.056738
189
190
190
191
191
192
192
193
193
194
194
195
.. rst-class :: sphx-glr-timing
195
196
196
- **Total running time of the script: ** ( 2 minutes 2.443 seconds)
197
+ **Total running time of the script: ** ( 1 minutes 56.364 seconds)
197
198
198
199
199
200
.. _sphx_glr_download_examples_40_advanced_example_calc_multiple_metrics.py :
0 commit comments