Skip to content

Commit cc3e529

Browse files
committed
Take suggestions into account
1 parent 60023d3 commit cc3e529

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

doc/faq.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ General
4242
dtype for your task. By default *auto-sklearn* treats object and string columns as strings and
4343
encodes the data using `sklearn.feature_extraction.text.CountVectorizer <https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html>`_
4444
* If your data contains categorical values (in the features or targets), ensure that you explicitly label them as categorical.
45-
data labeled as categorical is encoded by using a `sklearn.preprocessing.LabelEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_
45+
Data labeled as categorical is encoded by using a `sklearn.preprocessing.LabelEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_
4646
for unidimensional data and a `sklearn.preprodcessing.OrdinalEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html>`_ for multidimensional data.
4747
* For further details on how to properly encode your data, you can check the Pandas Example
4848
`Working with categorical data <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_). If you are working with time series, it is recommended that you follow this approach

doc/manual.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -328,7 +328,7 @@ Other
328328
dtype for your task. By default *auto-sklearn* treats object and string columns as strings and
329329
encodes the data using `sklearn.feature_extraction.text.CountVectorizer <https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html>`_
330330
* If your data contains categorical values (in the features or targets), ensure that you explicitly label them as categorical.
331-
data labeled as categorical is encoded by using a `sklearn.preprocessing.LabelEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_
331+
Data labeled as categorical is encoded by using a `sklearn.preprocessing.LabelEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html>`_
332332
for unidimensional data and a `sklearn.preprodcessing.OrdinalEncoder <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html>`_ for multidimensional data.
333333
* For further details on how to properly encode your data, you can check the Pandas Example
334334
`Working with categorical data <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_). If you are working with time series, it is recommended that you follow this approach

0 commit comments

Comments
 (0)