diff --git a/custom_loss/custom_loss_and_metric_tutorial.ipynb b/custom_loss/custom_loss_and_metric_tutorial.ipynb index cb5c005..6982f8e 100644 --- a/custom_loss/custom_loss_and_metric_tutorial.ipynb +++ b/custom_loss/custom_loss_and_metric_tutorial.ipynb @@ -280,6 +280,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Gradient')\n", "model1.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model1.predict(X_test)" ] }, { @@ -323,6 +324,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Gradient')\n", "model2.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model2.predict(X_test)" ] }, { @@ -455,6 +457,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Gradient')\n", "model1.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model1.predict(X_test)" ] }, { @@ -498,6 +501,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Gradient')\n", "model2.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model2.predict(X_test)" ] }, { @@ -652,6 +656,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Newton', classes_count=5)\n", "model1.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model1.predict(X_test)" ] }, { @@ -695,6 +700,7 @@ " learning_rate=0.03, bootstrap_type='Bayesian', boost_from_average=False,\n", " leaf_estimation_iterations=1, leaf_estimation_method='Newton', classes_count=5)\n", "model2.fit(X_train, y_train, eval_set=(X_test, y_test))" + "model2.predict(X_test)" ] } ],