|
| 1 | +from pydatastructs.trees.binary_trees import Node |
| 2 | +from collections import deque as Queue |
| 3 | +from pydatastructs.linear_data_structures.arrays import _check_type |
| 4 | + |
| 5 | +__all__ = [ |
| 6 | + 'OneDimensionalSegmentTree' |
| 7 | +] |
| 8 | + |
| 9 | +class OneDimensionalSegmentTree(object): |
| 10 | + """ |
| 11 | + Represents one dimensional segment trees. |
| 12 | +
|
| 13 | + Parameters |
| 14 | + ========== |
| 15 | +
|
| 16 | + segs: list/tuple/set |
| 17 | + The segs should contains tuples/list/set of size 2 |
| 18 | + denoting the start and end points of the intervals. |
| 19 | +
|
| 20 | + Examples |
| 21 | + ======== |
| 22 | +
|
| 23 | + >>> from pydatastructs import OneDimensionalSegmentTree as ODST |
| 24 | + >>> segt = ODST([(3, 8), (9, 20)]) |
| 25 | + >>> segt.build() |
| 26 | + >>> segt.tree[0].key |
| 27 | + [False, 2, 3, False] |
| 28 | + >>> len(segt.query(4)) |
| 29 | + 1 |
| 30 | +
|
| 31 | + Note |
| 32 | + ==== |
| 33 | +
|
| 34 | + All the segments are assumed to be closed intervals, |
| 35 | + i.e., the ends are points of segments are also included in |
| 36 | + computation. |
| 37 | +
|
| 38 | + References |
| 39 | + ========== |
| 40 | +
|
| 41 | + .. [1] https://en.wikipedia.org/wiki/Segment_tree |
| 42 | +
|
| 43 | + """ |
| 44 | + |
| 45 | + __slots__ = ['segments', 'tree', 'root_idx', 'cache'] |
| 46 | + |
| 47 | + def __new__(cls, segs): |
| 48 | + obj = object.__new__(cls) |
| 49 | + if any((not isinstance(seg, (tuple, list, set)) or len(seg) != 2) |
| 50 | + for seg in segs): |
| 51 | + raise ValueError('%s is invalid set of intervals'%(segs)) |
| 52 | + for i in range(len(segs)): |
| 53 | + segs[i] = list(segs[i]) |
| 54 | + segs[i].sort() |
| 55 | + obj.segments = [seg for seg in segs] |
| 56 | + obj.tree, obj.root_idx, obj.cache = [], None, False |
| 57 | + return obj |
| 58 | + |
| 59 | + def _union(self, i1, i2): |
| 60 | + """ |
| 61 | + Helper function for taking union of two |
| 62 | + intervals. |
| 63 | + """ |
| 64 | + return Node([i1.key[0], i1.key[1], i2.key[2], i2.key[3]], None) |
| 65 | + |
| 66 | + def _intersect(self, i1, i2): |
| 67 | + """ |
| 68 | + Helper function for finding intersection of two |
| 69 | + intervals. |
| 70 | + """ |
| 71 | + if i1 == None or i2 == None: |
| 72 | + return False |
| 73 | + if i1.key[2] < i2.key[1] or i2.key[2] < i1.key[1]: |
| 74 | + return False |
| 75 | + c1, c2 = None, None |
| 76 | + if i1.key[2] == i2.key[1]: |
| 77 | + c1 = (i1.key[3] and i2.key[0]) |
| 78 | + if i2.key[2] == i1.key[1]: |
| 79 | + c2 = (i2.key[3] and i1.key[0]) |
| 80 | + if c1 == False and c2 == False: |
| 81 | + return False |
| 82 | + return True |
| 83 | + |
| 84 | + def _contains(self, i1, i2): |
| 85 | + """ |
| 86 | + Helper function for checking if the first interval |
| 87 | + is contained in second interval. |
| 88 | + """ |
| 89 | + if i1 == None or i2 == None: |
| 90 | + return False |
| 91 | + if i1.key[1] < i2.key[1] and i1.key[2] > i2.key[2]: |
| 92 | + return True |
| 93 | + if i1.key[1] == i2.key[1] and i1.key[2] > i2.key[2]: |
| 94 | + return (i1.key[0] or not i2.key[0]) |
| 95 | + if i1.key[1] < i2.key[1] and i1.key[2] == i2.key[2]: |
| 96 | + return i1.key[3] or not i2.key[3] |
| 97 | + if i1.key[1] == i2.key[1] and i1.key[2] == i2.key[2]: |
| 98 | + return not ((not i1.key[3] and i2.key[3]) or (not i1.key[0] and i2.key[0])) |
| 99 | + return False |
| 100 | + |
| 101 | + def _iterate(self, calls, I, idx): |
| 102 | + """ |
| 103 | + Helper function for filling the calls |
| 104 | + stack. Used for imitating the stack based |
| 105 | + approach used in recursion. |
| 106 | + """ |
| 107 | + if self.tree[idx].right == None: |
| 108 | + rc = None |
| 109 | + else: |
| 110 | + rc = self.tree[self.tree[idx].right] |
| 111 | + if self.tree[idx].left == None: |
| 112 | + lc = None |
| 113 | + else: |
| 114 | + lc = self.tree[self.tree[idx].left] |
| 115 | + if self._intersect(I, rc): |
| 116 | + calls.append(self.tree[idx].right) |
| 117 | + if self._intersect(I, lc): |
| 118 | + calls.append(self.tree[idx].left) |
| 119 | + return calls |
| 120 | + |
| 121 | + def build(self): |
| 122 | + """ |
| 123 | + Builds the segment tree from the segments, |
| 124 | + using iterative algorithm based on stacks. |
| 125 | + """ |
| 126 | + if self.cache: |
| 127 | + return None |
| 128 | + endpoints = [] |
| 129 | + for segment in self.segments: |
| 130 | + endpoints.extend(segment) |
| 131 | + endpoints.sort() |
| 132 | + |
| 133 | + elem_int = Queue() |
| 134 | + elem_int.append(Node([False, endpoints[0] - 1, endpoints[0], False], None)) |
| 135 | + i = 0 |
| 136 | + while i < len(endpoints) - 1: |
| 137 | + elem_int.append(Node([True, endpoints[i], endpoints[i], True], None)) |
| 138 | + elem_int.append(Node([False, endpoints[i], endpoints[i+1], False], None)) |
| 139 | + i += 1 |
| 140 | + elem_int.append(Node([True, endpoints[i], endpoints[i], True], None)) |
| 141 | + elem_int.append(Node([False, endpoints[i], endpoints[i] + 1, False], None)) |
| 142 | + |
| 143 | + self.tree = [] |
| 144 | + while len(elem_int) > 1: |
| 145 | + m = len(elem_int) |
| 146 | + while m >= 2: |
| 147 | + I1 = elem_int.popleft() |
| 148 | + I2 = elem_int.popleft() |
| 149 | + I = self._union(I1, I2) |
| 150 | + I.left = len(self.tree) |
| 151 | + I.right = len(self.tree) + 1 |
| 152 | + self.tree.append(I1), self.tree.append(I2) |
| 153 | + elem_int.append(I) |
| 154 | + m -= 2 |
| 155 | + if m & 1 == 1: |
| 156 | + Il = elem_int.popleft() |
| 157 | + elem_int.append(Il) |
| 158 | + |
| 159 | + Ir = elem_int.popleft() |
| 160 | + Ir.left, Ir.right = -3, -2 |
| 161 | + self.tree.append(Ir) |
| 162 | + self.root_idx = -1 |
| 163 | + |
| 164 | + for segment in self.segments: |
| 165 | + I = Node([True, segment[0], segment[1], True], None) |
| 166 | + calls = [self.root_idx] |
| 167 | + while calls: |
| 168 | + idx = calls.pop() |
| 169 | + if self._contains(I, self.tree[idx]): |
| 170 | + if self.tree[idx].data == None: |
| 171 | + self.tree[idx].data = [] |
| 172 | + self.tree[idx].data.append(I) |
| 173 | + continue |
| 174 | + calls = self._iterate(calls, I, idx) |
| 175 | + self.cache = True |
| 176 | + |
| 177 | + def query(self, qx, init_node=None): |
| 178 | + """ |
| 179 | + Queries the segment tree. |
| 180 | +
|
| 181 | + Parameters |
| 182 | + ========== |
| 183 | +
|
| 184 | + qx: int/float |
| 185 | + The query point |
| 186 | + init_node: int |
| 187 | + The index of the node from which the query process |
| 188 | + is to be started. |
| 189 | +
|
| 190 | + Returns |
| 191 | + ======= |
| 192 | +
|
| 193 | + intervals: set |
| 194 | + The set of the intervals which contain the query |
| 195 | + point. |
| 196 | +
|
| 197 | + References |
| 198 | + ========== |
| 199 | +
|
| 200 | + .. [1] https://en.wikipedia.org/wiki/Segment_tree |
| 201 | + """ |
| 202 | + if not self.cache: |
| 203 | + self.build() |
| 204 | + if init_node == None: |
| 205 | + init_node = self.root_idx |
| 206 | + qn = Node([True, qx, qx, True], None) |
| 207 | + intervals = [] |
| 208 | + calls = [init_node] |
| 209 | + while calls: |
| 210 | + idx = calls.pop() |
| 211 | + if _check_type(self.tree[idx].data, list): |
| 212 | + intervals.extend(self.tree[idx].data) |
| 213 | + calls = self._iterate(calls, qn, idx) |
| 214 | + return set(intervals) |
| 215 | + |
| 216 | + def __str__(self): |
| 217 | + """ |
| 218 | + Used for printing. |
| 219 | + """ |
| 220 | + if not self.cache: |
| 221 | + self.build() |
| 222 | + str_tree = [] |
| 223 | + for seg in self.tree: |
| 224 | + if seg.data == None: |
| 225 | + data = None |
| 226 | + else: |
| 227 | + data = [str(sd) for sd in seg.data] |
| 228 | + str_tree.append((seg.left, seg.key, data, seg.right)) |
| 229 | + return str(str_tree) |
0 commit comments