You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: spec/extensions/linear_algebra_functions.md
+29-11Lines changed: 29 additions & 11 deletions
Original file line number
Diff line number
Diff line change
@@ -82,6 +82,10 @@ Returns the lower (upper) Cholesky decomposition x = LLᵀ (x = UᵀU) of a symm
82
82
83
83
<!-- NOTE: once complex numbers are supported, each square matrix must be Hermitian. -->
84
84
85
+
```{note}
86
+
Whether an array library explicitly checks whether an input array is a symmetric positive-definite matrix (or a stack of matrices) is implementation-defined.
87
+
```
88
+
85
89
#### Parameters
86
90
87
91
-**x**: _<array>_
@@ -170,10 +174,18 @@ Returns the specified diagonals of a matrix (or a stack of matrices) `x`.
170
174
(function-linalg-eigh)=
171
175
### linalg.eigh(x, /)
172
176
177
+
```{note}
178
+
The function `eig` will be added in a future version of the specification, as it requires complex number support.
179
+
```
180
+
173
181
Returns an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of symmetric matrices) `x`, where `Q` is an orthogonal matrix (or a stack of matrices) and `L` is a vector (or a stack of vectors).
174
182
175
183
<!-- NOTE: once complex number support, each matrix must be Hermitian and the returned Q unitary. We might also want to make the dtype of `eigenvalues` unconditionally real -->
176
184
185
+
```{note}
186
+
Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined.
187
+
```
188
+
177
189
#### Parameters
178
190
179
191
-**x**: _<array>_
@@ -195,18 +207,21 @@ Returns an eigendecomposition x = QLQᵀ of a symmetric matrix (or a stack of sy
195
207
Eigenvalue sort order is left unspecified.
196
208
```
197
209
198
-
```{note}
199
-
The function `eig` will be added in a future version of the specification,
200
-
as it requires complex number support.
201
-
```
202
-
203
210
(function-linalg-eigvalsh)=
204
211
### linalg.eigvalsh(x, /)
205
212
213
+
```{note}
214
+
The function `eigvals` will be added in a future version of the specification, as it requires complex number support.
215
+
```
216
+
206
217
Returns the eigenvalues of a symmetric matrix (or a stack of symmetric matrices) `x`.
207
218
208
219
<!-- NOTE: once complex number support, each matrix must be Hermitian -->
209
220
221
+
```{note}
222
+
Whether an array library explicitly checks whether an input array is a symmetric matrix (or a stack of symmetric matrices) is implementation-defined.
223
+
```
224
+
210
225
#### Parameters
211
226
212
227
-**x**: _<array>_
@@ -223,11 +238,6 @@ Returns the eigenvalues of a symmetric matrix (or a stack of symmetric matrices)
223
238
Eigenvalue sort order is left unspecified.
224
239
```
225
240
226
-
```{note}
227
-
The function `eigvals` will be added in a future version of the specification,
228
-
as it requires complex number support.
229
-
```
230
-
231
241
(function-linalg-inv)=
232
242
### linalg.inv(x, /)
233
243
@@ -395,11 +405,15 @@ Returns the (Moore-Penrose) pseudo-inverse of a matrix (or a stack of matrices)
395
405
396
406
Returns the qr decomposition x = QR of a full column rank matrix (or a stack of matrices), where `Q` is an orthonormal matrix (or a stack of matrices) and `R` is an upper-triangular matrix (or a stack of matrices).
397
407
408
+
```{note}
409
+
Whether an array library explicitly checks whether an input array is a full column rank matrix (or a stack of full column rank matrices) is implementation-defined.
410
+
```
411
+
398
412
#### Parameters
399
413
400
414
-**x**: _<array>_
401
415
402
-
- input array having shape `(..., M, N)` and whose innermost two dimensions form `MxN` matrices of rank equal to `N`. Should have a floating-point data type.
416
+
- input array having shape `(..., M, N)` and whose innermost two dimensions form `MxN` matrices of rank `N`. Should have a floating-point data type.
403
417
404
418
-**mode**: _Literal\[ 'reduced', 'complete' ]_
405
419
@@ -454,6 +468,10 @@ The purpose of this function is to calculate the determinant more accurately whe
454
468
455
469
Returns the solution to the system of linear equations represented by the well-determined (i.e., full rank) linear matrix equation `AX = B`.
456
470
471
+
```{note}
472
+
Whether an array library explicitly checks whether an input array is full rank is implementation-defined.
0 commit comments