|
26 | 26 |
|
27 | 27 | namespace Microsoft.ML.Transforms
|
28 | 28 | {
|
| 29 | + /// <summary> |
| 30 | + /// <see cref="IEstimator{TTransformer}"/> for the <see cref="NormalizingTransformer"/>. |
| 31 | + /// </summary> |
| 32 | + /// <remarks> |
| 33 | + /// <format type="text/markdown"><![CDATA[ |
| 34 | + /// |
| 35 | + /// ### Estimator Characteristics |
| 36 | + /// | | | |
| 37 | + /// | -- | -- | |
| 38 | + /// | Does this estimator need to look at the data to train its parameters? | Yes | |
| 39 | + /// | Input column data type | <xref:System.Single> or <xref:System.Double> or a known-sized vector of those types. | |
| 40 | + /// | Output column data type | The same data type as the input column | |
| 41 | + /// |
| 42 | + /// The resulting NormalizingEstimator will normalize the data in one of the following ways based upon how it was created: |
| 43 | + /// * Min Max - A linear rescale that is based upon the minimum and maximum values for each row. |
| 44 | + /// * Mean Variance - Rescale each row to unit variance and, optionally, zero mean. |
| 45 | + /// * Log Mean Variance - Rescale each row to unit variance based on a log scale. |
| 46 | + /// * Binning - Bucketizes the data in each row and performs a linear rescale based on the calculated bins. |
| 47 | + /// * Supervised Binning - Bucketize the data in each row and performas a linear rescale based on the calculated bins. The bin calculation is based on correlation of the Label column. |
| 48 | + /// |
| 49 | + /// ### Estimator Details |
| 50 | + /// The interval of the normalized data depends on whether fixZero is specified or not. fixZero defaults to true. |
| 51 | + /// When fixZero is false, the normalized interval is $[0,1]$ and the distribution of the normalized values depends on the normalization mode. For example, with Min Max, the minimum |
| 52 | + /// and maximum values are mapped to 0 and 1 respectively and remaining values fall in between. |
| 53 | + /// When fixZero is set, the normalized interval is $[-1,1]$ with the distribution of the normalized values depending on the normalization mode, but the behavior is different. |
| 54 | + /// With Min Max, the distribution depends on how far away the number is from 0, resulting in the number with the largest distance being mapped to 1 if its a positive number |
| 55 | + /// or -1 if its a negative number. The distance from 0 will affect the distribution with a majority of numbers that are closer together normalizing towards 0. |
| 56 | + /// |
| 57 | + /// To create this estimator use one of the following: |
| 58 | + /// * [NormalizeMinMax](xref:Microsoft.ML.NormalizationCatalog.NormalizeMinMax(Microsoft.ML.TransformsCatalog, System.String, System.String, System.Int64, System.Boolean)) |
| 59 | + /// * [NormalizeMeanVariance](xref:Microsoft.ML.NormalizationCatalog.NormalizeMeanVariance(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean,System.Boolean)) |
| 60 | + /// * [NormalizeLogMeanVariance](xref:Microsoft.ML.NormalizationCatalog.NormalizeLogMeanVariance(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean)) |
| 61 | + /// * [NormalizeBinning](xref:Microsoft.ML.NormalizationCatalog.NormalizeBinning(Microsoft.ML.TransformsCatalog,System.String,System.String,System.Int64,System.Boolean,System.Int32)) |
| 62 | + /// * [NormalizeSupervisedBinning](xref:Microsoft.ML.NormalizationCatalog.NormalizeSupervisedBinning(Microsoft.ML.TransformsCatalog,System.String,System.String,System.String,System.Int64,System.Boolean,System.Int32,System.Int32)) |
| 63 | + /// ]]> |
| 64 | + /// </format> |
| 65 | + /// </remarks> |
29 | 66 | public sealed class NormalizingEstimator : IEstimator<NormalizingTransformer>
|
30 | 67 | {
|
31 | 68 | [BestFriend]
|
@@ -284,6 +321,9 @@ public SchemaShape GetOutputSchema(SchemaShape inputSchema)
|
284 | 321 | }
|
285 | 322 | }
|
286 | 323 |
|
| 324 | + /// <summary> |
| 325 | + /// <see cref="ITransformer"/> resulting from fitting an <see cref="NormalizingEstimator"/>. |
| 326 | + /// </summary> |
287 | 327 | public sealed partial class NormalizingTransformer : OneToOneTransformerBase
|
288 | 328 | {
|
289 | 329 | internal const string LoaderSignature = "Normalizer";
|
|
0 commit comments