|
| 1 | +// Licensed to the .NET Foundation under one or more agreements. |
| 2 | +// The .NET Foundation licenses this file to you under the MIT license. |
| 3 | +// See the LICENSE file in the project root for more information. |
| 4 | + |
| 5 | +using BenchmarkDotNet.Attributes; |
| 6 | +using Microsoft.ML.Runtime; |
| 7 | +using Microsoft.ML.Runtime.Data; |
| 8 | +using Microsoft.ML.Runtime.Api; |
| 9 | +using Microsoft.ML.Runtime.Learners; |
| 10 | + |
| 11 | +namespace Microsoft.ML.Benchmarks |
| 12 | +{ |
| 13 | + [Config(typeof(PredictConfig))] |
| 14 | + public class PredictionEngineBench |
| 15 | + { |
| 16 | + private IrisData _irisExample; |
| 17 | + private PredictionFunction<IrisData, IrisPrediction> _irisModel; |
| 18 | + |
| 19 | + private SentimentData _sentimentExample; |
| 20 | + private PredictionFunction<SentimentData, SentimentPrediction> _sentimentModel; |
| 21 | + |
| 22 | + private BreastCancerData _breastCancerExample; |
| 23 | + private PredictionFunction<BreastCancerData, BreastCancerPrediction> _breastCancerModel; |
| 24 | + |
| 25 | + [GlobalSetup(Target = nameof(MakeIrisPredictions))] |
| 26 | + public void SetupIrisPipeline() |
| 27 | + { |
| 28 | + _irisExample = new IrisData() |
| 29 | + { |
| 30 | + SepalLength = 3.3f, |
| 31 | + SepalWidth = 1.6f, |
| 32 | + PetalLength = 0.2f, |
| 33 | + PetalWidth = 5.1f, |
| 34 | + }; |
| 35 | + |
| 36 | + string _irisDataPath = Program.GetInvariantCultureDataPath("iris.txt"); |
| 37 | + |
| 38 | + using (var env = new ConsoleEnvironment(seed: 1, conc: 1, verbose: false, sensitivity: MessageSensitivity.None, outWriter: EmptyWriter.Instance)) |
| 39 | + { |
| 40 | + var reader = new TextLoader(env, |
| 41 | + new TextLoader.Arguments() |
| 42 | + { |
| 43 | + Separator = "\t", |
| 44 | + HasHeader = true, |
| 45 | + Column = new[] |
| 46 | + { |
| 47 | + new TextLoader.Column("Label", DataKind.R4, 0), |
| 48 | + new TextLoader.Column("SepalLength", DataKind.R4, 1), |
| 49 | + new TextLoader.Column("SepalWidth", DataKind.R4, 2), |
| 50 | + new TextLoader.Column("PetalLength", DataKind.R4, 3), |
| 51 | + new TextLoader.Column("PetalWidth", DataKind.R4, 4), |
| 52 | + } |
| 53 | + }); |
| 54 | + |
| 55 | + IDataView data = reader.Read(new MultiFileSource(_irisDataPath)); |
| 56 | + |
| 57 | + var pipeline = new ConcatEstimator(env, "Features", new[] { "SepalLength", "SepalWidth", "PetalLength", "PetalWidth" }) |
| 58 | + .Append(new SdcaMultiClassTrainer(env, new SdcaMultiClassTrainer.Arguments { NumThreads = 1, ConvergenceTolerance = 1e-2f }, "Features", "Label")); |
| 59 | + |
| 60 | + var model = pipeline.Fit(data); |
| 61 | + |
| 62 | + _irisModel = model.MakePredictionFunction<IrisData, IrisPrediction>(env); |
| 63 | + } |
| 64 | + } |
| 65 | + |
| 66 | + [GlobalSetup(Target = nameof(MakeSentimentPredictions))] |
| 67 | + public void SetupSentimentPipeline() |
| 68 | + { |
| 69 | + _sentimentExample = new SentimentData() |
| 70 | + { |
| 71 | + SentimentText = "Not a big fan of this." |
| 72 | + }; |
| 73 | + |
| 74 | + string _sentimentDataPath = Program.GetInvariantCultureDataPath("wikipedia-detox-250-line-data.tsv"); |
| 75 | + |
| 76 | + using (var env = new ConsoleEnvironment(seed: 1, conc: 1, verbose: false, sensitivity: MessageSensitivity.None, outWriter: EmptyWriter.Instance)) |
| 77 | + { |
| 78 | + var reader = new TextLoader(env, |
| 79 | + new TextLoader.Arguments() |
| 80 | + { |
| 81 | + Separator = "\t", |
| 82 | + HasHeader = true, |
| 83 | + Column = new[] |
| 84 | + { |
| 85 | + new TextLoader.Column("Label", DataKind.BL, 0), |
| 86 | + new TextLoader.Column("SentimentText", DataKind.Text, 1) |
| 87 | + } |
| 88 | + }); |
| 89 | + |
| 90 | + IDataView data = reader.Read(new MultiFileSource(_sentimentDataPath)); |
| 91 | + |
| 92 | + var pipeline = new TextTransform(env, "SentimentText", "Features") |
| 93 | + .Append(new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments { NumThreads = 1, ConvergenceTolerance = 1e-2f }, "Features", "Label")); |
| 94 | + |
| 95 | + var model = pipeline.Fit(data); |
| 96 | + |
| 97 | + _sentimentModel = model.MakePredictionFunction<SentimentData, SentimentPrediction>(env); |
| 98 | + } |
| 99 | + } |
| 100 | + |
| 101 | + [GlobalSetup(Target = nameof(MakeBreastCancerPredictions))] |
| 102 | + public void SetupBreastCancerPipeline() |
| 103 | + { |
| 104 | + _breastCancerExample = new BreastCancerData() |
| 105 | + { |
| 106 | + Features = new[] { 5f, 1f, 1f, 1f, 2f, 1f, 3f, 1f, 1f } |
| 107 | + }; |
| 108 | + |
| 109 | + string _breastCancerDataPath = Program.GetInvariantCultureDataPath("breast-cancer.txt"); |
| 110 | + |
| 111 | + using (var env = new ConsoleEnvironment(seed: 1, conc: 1, verbose: false, sensitivity: MessageSensitivity.None, outWriter: EmptyWriter.Instance)) |
| 112 | + { |
| 113 | + var reader = new TextLoader(env, |
| 114 | + new TextLoader.Arguments() |
| 115 | + { |
| 116 | + Separator = "\t", |
| 117 | + HasHeader = false, |
| 118 | + Column = new[] |
| 119 | + { |
| 120 | + new TextLoader.Column("Label", DataKind.BL, 0), |
| 121 | + new TextLoader.Column("Features", DataKind.R4, new[] { new TextLoader.Range(1, 9) }) |
| 122 | + } |
| 123 | + }); |
| 124 | + |
| 125 | + IDataView data = reader.Read(new MultiFileSource(_breastCancerDataPath)); |
| 126 | + |
| 127 | + var pipeline = new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments { NumThreads = 1, ConvergenceTolerance = 1e-2f }, "Features", "Label"); |
| 128 | + |
| 129 | + var model = pipeline.Fit(data); |
| 130 | + |
| 131 | + _breastCancerModel = model.MakePredictionFunction<BreastCancerData, BreastCancerPrediction>(env); |
| 132 | + } |
| 133 | + } |
| 134 | + |
| 135 | + [Benchmark] |
| 136 | + public void MakeIrisPredictions() |
| 137 | + { |
| 138 | + for (int i = 0; i < 10000; i++) |
| 139 | + { |
| 140 | + _irisModel.Predict(_irisExample); |
| 141 | + } |
| 142 | + } |
| 143 | + |
| 144 | + [Benchmark] |
| 145 | + public void MakeSentimentPredictions() |
| 146 | + { |
| 147 | + for (int i = 0; i < 10000; i++) |
| 148 | + { |
| 149 | + _sentimentModel.Predict(_sentimentExample); |
| 150 | + } |
| 151 | + } |
| 152 | + |
| 153 | + [Benchmark] |
| 154 | + public void MakeBreastCancerPredictions() |
| 155 | + { |
| 156 | + for (int i = 0; i < 10000; i++) |
| 157 | + { |
| 158 | + _breastCancerModel.Predict(_breastCancerExample); |
| 159 | + } |
| 160 | + } |
| 161 | + } |
| 162 | + |
| 163 | + public class SentimentData |
| 164 | + { |
| 165 | + [ColumnName("Label")] |
| 166 | + public bool Sentiment; |
| 167 | + |
| 168 | + public string SentimentText; |
| 169 | + } |
| 170 | + |
| 171 | + public class SentimentPrediction |
| 172 | + { |
| 173 | + [ColumnName("PredictedLabel")] |
| 174 | + public bool Sentiment; |
| 175 | + |
| 176 | + public float Score; |
| 177 | + } |
| 178 | + |
| 179 | + public class BreastCancerData |
| 180 | + { |
| 181 | + [ColumnName("Label")] |
| 182 | + public bool Label; |
| 183 | + |
| 184 | + [ColumnName("Features"), VectorType(9)] |
| 185 | + public float[] Features; |
| 186 | + } |
| 187 | + |
| 188 | + public class BreastCancerPrediction |
| 189 | + { |
| 190 | + [ColumnName("Score")] |
| 191 | + public float Score; |
| 192 | + } |
| 193 | +} |
0 commit comments