Skip to content

Commit cd7c46e

Browse files
Documentation updates (#5635)
* documentation updates * fixed spelling error * Update docs/building/unix-instructions.md Co-authored-by: Santiago Fernandez Madero <[email protected]> Co-authored-by: Santiago Fernandez Madero <[email protected]>
1 parent 1d52f39 commit cd7c46e

File tree

3 files changed

+13
-11
lines changed

3 files changed

+13
-11
lines changed

docs/api-reference/tensorflow-usage.md

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
## Using TensorFlow based APIs
2-
In order to run any TensorFlow based ML.Net APIs you must first add a NuGet dependency
3-
on the TensorFlow redist library. There are currently two versions you can use. One which is
2+
In order to run any TensorFlow based ML.Net APIs you must first add a NuGet dependency
3+
on the TensorFlow redist library. There are currently two versions you can use. One which is
44
compiled for GPU support, and one which has CPU support only.
55

66
### CPU only
@@ -22,18 +22,18 @@ As of now TensorFlow does not support running on GPUs for MacOS, so we cannot su
2222
You must have at least one CUDA compatible GPU, for a list of compatible GPUs see
2323
[Nvidia's Guide](https://developer.nvidia.com/cuda-gpus).
2424

25-
Install [CUDA v10.0](https://developer.nvidia.com/cuda-10.0-download-archive) and [CUDNN v7.6.4](https://developer.nvidia.com/rdp/cudnn-download).
25+
Install [CUDA v10.1](https://developer.nvidia.com/cuda-10.1-download-archive-update2) and [CUDNN v7.6.4](https://developer.nvidia.com/rdp/cudnn-download).
2626

27-
Make sure you install CUDA v10.0, not any other newer version.
27+
Make sure you install CUDA v10.1, not any other newer version.
2828
After downloading CUDNN v7.6.4 .zip file and unpacking it, you need to do the following steps:
2929

30-
`copy <CUDNN_zip_files_path>\cuda\bin\cudnn64_7.dll to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin`
30+
`copy <CUDNN_zip_files_path>\cuda\bin\cudnn64_7.dll to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin`
3131

3232
For C/C++ development:
3333

34-
`Copy <CUDNN_zip_files_path>\cuda\ include\cudnn.h to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include`
34+
`Copy <CUDNN_zip_files_path>\cuda\ include\cudnn.h to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\include`
3535

36-
`Copy <CUDNN_zip_files_path>\cuda\lib\x64\cudnn.lib to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64`
36+
`Copy <CUDNN_zip_files_path>\cuda\lib\x64\cudnn.lib to <YOUR_DRIVE>\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64`
3737

3838
For further details in cuDNN you can follow the [cuDNN Installation guide](https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows).
3939

docs/building/unix-instructions.md

+2
Original file line numberDiff line numberDiff line change
@@ -54,3 +54,5 @@ One way of obtaining CMake and other required libraries is via [Homebrew](https:
5454
```sh
5555
$ brew update && brew install cmake https://github.com/raw/dotnet/machinelearning/master/build/libomp.rb mono-libgdiplus gettext && brew link gettext --force && brew link libomp --force
5656
```
57+
58+
Please note that newer versions of Homebrew [don't allow installing directly from a URL](https://github.com/Homebrew/brew/issues/8791). If you run into this issue, you may need to download libomp.rb first and install it with the local file instead.

docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/ApplyONNXModelWithInMemoryImages.cs

+4-4
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ public static class ApplyOnnxModelWithInMemoryImages
1313
public static void Example()
1414
{
1515
// Download the squeeznet image model from ONNX model zoo, version 1.2
16-
// https://github.com/onnx/models/tree/master/squeezenet or use
16+
// https://github.com/onnx/models/tree/master/vision/classification/squeezenet or use
1717
// Microsoft.ML.Onnx.TestModels nuget.
1818
// It's a multiclass classifier. It consumes an input "data_0" and
1919
// produces an output "softmaxout_1".
@@ -45,7 +45,7 @@ public static void Example()
4545
// Map column "data_0" to column "softmaxout_1"
4646
var pipeline = mlContext.Transforms.ExtractPixels("data_0", "Image")
4747
.Append(mlContext.Transforms.ApplyOnnxModel("softmaxout_1",
48-
"data_0", modelPath));
48+
"data_0", modelPath));
4949

5050
var model = pipeline.Fit(dataView);
5151
var onnx = model.Transform(dataView);
@@ -60,12 +60,12 @@ public static void Example()
6060
ImageDataPoint>(onnx, false).ToList();
6161

6262
// The scores are probabilities of all possible classes, so they should
63-
// all be positive.
63+
// all be positive.
6464
foreach (var dataPoint in transformedDataPoints)
6565
{
6666
var firstClassProb = dataPoint.Scores.First();
6767
var lastClassProb = dataPoint.Scores.Last();
68-
Console.WriteLine("The probability of being the first class is " +
68+
Console.WriteLine("The probability of being the first class is " +
6969
(firstClassProb * 100) + "%.");
7070

7171
Console.WriteLine($"The probability of being the last class is " +

0 commit comments

Comments
 (0)