Skip to content

Commit d4edc48

Browse files
committed
Address comments. Everything touched is under TransformsCatalog now.
1 parent df08e28 commit d4edc48

File tree

27 files changed

+64
-123
lines changed

27 files changed

+64
-123
lines changed

docs/samples/Microsoft.ML.Samples/Dynamic/Normalizer.cs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ public static void Example()
2828
// 35 1 6-11yrs 1 3 32 5 ...
2929

3030
// A pipeline for normalizing the Induced column.
31-
var pipeline = ml.Transforms.Normalization.Normalize("Induced");
31+
var pipeline = ml.Transforms.Normalize("Induced");
3232
// The transformed (normalized according to Normalizer.NormalizerMode.MinMax) data.
3333
var transformer = pipeline.Fit(trainData);
3434

@@ -66,7 +66,7 @@ public static void Example()
6666

6767
// Composing a different pipeline if we wanted to normalize more than one column at a time.
6868
// Using log scale as the normalization mode.
69-
var multiColPipeline = ml.Transforms.Normalization.Normalize(NormalizingEstimator.NormalizerMode.LogMeanVariance, new ColumnOptions[] { ("LogInduced", "Induced"), ("LogSpontaneous", "Spontaneous") });
69+
var multiColPipeline = ml.Transforms.Normalize(NormalizingEstimator.NormalizerMode.LogMeanVariance, new ColumnOptions[] { ("LogInduced", "Induced"), ("LogSpontaneous", "Spontaneous") });
7070
// The transformed data.
7171
var multiColtransformer = multiColPipeline.Fit(trainData);
7272
var multiColtransformedData = multiColtransformer.Transform(trainData);

docs/samples/Microsoft.ML.Samples/Dynamic/PermutationFeatureImportance/PFIRegressionExample.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ public static void Example()
1919
// Normalize the data set so that for each feature, its maximum value is 1 while its minimum value is 0.
2020
// Then append a linear regression trainer.
2121
var pipeline = mlContext.Transforms.Concatenate("Features", featureNames)
22-
.Append(mlContext.Transforms.Normalization.Normalize("Features"))
22+
.Append(mlContext.Transforms.Normalize("Features"))
2323
.Append(mlContext.Regression.Trainers.OrdinaryLeastSquares(
2424
labelColumnName: labelName, featureColumnName: "Features"));
2525
var model = pipeline.Fit(data);

docs/samples/Microsoft.ML.Samples/Dynamic/PermutationFeatureImportance/PfiBinaryClassificationExample.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ public static void Example()
2121
// Normalize the data set so that for each feature, its maximum value is 1 while its minimum value is 0.
2222
// Then append a logistic regression trainer.
2323
var pipeline = mlContext.Transforms.Concatenate("Features", featureNames)
24-
.Append(mlContext.Transforms.Normalization.Normalize("Features"))
24+
.Append(mlContext.Transforms.Normalize("Features"))
2525
.Append(mlContext.BinaryClassification.Trainers.LogisticRegression(
2626
labelColumnName: labelName, featureColumnName: "Features"));
2727
var model = pipeline.Fit(data);

docs/samples/Microsoft.ML.Samples/Dynamic/ProjectionTransforms.cs

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ public static void Example()
3737
};
3838

3939
// A pipeline to project Features column into Random fourier space.
40-
var rffPipeline = ml.Transforms.KernelExpansion.RandomFourierExpand(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), dimension: 4);
40+
var rffPipeline = ml.Transforms.RandomFourierExpand(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), dimension: 4);
4141
// The transformed (projected) data.
4242
var transformedData = rffPipeline.Fit(trainData).Transform(trainData);
4343
// Getting the data of the newly created column, so we can preview it.
@@ -55,7 +55,7 @@ public static void Example()
5555
//0.165 0.117 -0.547 0.014
5656

5757
// A pipeline to project Features column into L-p normalized vector.
58-
var lpNormalizePipeline = ml.Transforms.Normalization.LpNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), normKind: Transforms.LpNormalizingEstimatorBase.NormKind.L1Norm);
58+
var lpNormalizePipeline = ml.Transforms.LpNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), normKind: Transforms.LpNormalizingEstimatorBase.NormKind.L1Norm);
5959
// The transformed (projected) data.
6060
transformedData = lpNormalizePipeline.Fit(trainData).Transform(trainData);
6161
// Getting the data of the newly created column, so we can preview it.
@@ -73,7 +73,7 @@ public static void Example()
7373
// 0.133 0.156 0.178 0.200 0.000 0.022 0.044 0.067 0.089 0.111
7474

7575
// A pipeline to project Features column into L-p normalized vector.
76-
var gcNormalizePipeline = ml.Transforms.Normalization.GlobalContrastNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), ensureZeroMean:false);
76+
var gcNormalizePipeline = ml.Transforms.GlobalContrastNormalize(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), ensureZeroMean:false);
7777
// The transformed (projected) data.
7878
transformedData = gcNormalizePipeline.Fit(trainData).Transform(trainData);
7979
// Getting the data of the newly created column, so we can preview it.

docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/Projection/VectorWhiten.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ public static void Example()
4040

4141

4242
// A pipeline to project Features column into white noise vector.
43-
var whiteningPipeline = ml.Transforms.DimensionReduction.VectorWhiten(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features),
43+
var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features),
4444
kind: Transforms.WhiteningKind.Zca);
4545
// The transformed (projected) data.
4646
var transformedData = whiteningPipeline.Fit(trainData).Transform(trainData);

docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/Projection/VectorWhitenWithColumnOptions.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ public static void Example()
3939

4040

4141
// A pipeline to project Features column into white noise vector.
42-
var whiteningPipeline = ml.Transforms.DimensionReduction.VectorWhiten(new Transforms.VectorWhiteningEstimator.ColumnOptions(
42+
var whiteningPipeline = ml.Transforms.VectorWhiten(new Transforms.VectorWhiteningEstimator.ColumnOptions(
4343
nameof(SamplesUtils.DatasetUtils.SampleVectorOfNumbersData.Features), kind: Transforms.WhiteningKind.Pca, rank: 4));
4444
// The transformed (projected) data.
4545
var transformedData = whiteningPipeline.Fit(trainData).Transform(trainData);

src/Microsoft.ML.Data/Transforms/TransformsCatalog.cs

Lines changed: 0 additions & 60 deletions
Original file line numberDiff line numberDiff line change
@@ -30,21 +30,6 @@ public sealed class TransformsCatalog : IInternalCatalog
3030
/// </summary>
3131
public TextTransforms Text { get; }
3232

33-
/// <summary>
34-
/// The list of operations for applying kernel methods.
35-
/// </summary>
36-
public KernelExpansionTransforms KernelExpansion { get; }
37-
38-
/// <summary>
39-
/// The list of operations for data normalization.
40-
/// </summary>
41-
public NormalizationTransforms Normalization { get; }
42-
43-
/// <summary>
44-
/// The list of operations for dimension reduction.
45-
/// </summary>
46-
public DimensionReductionTransforms DimensionReduction { get; }
47-
4833
/// <summary>
4934
/// The list of operations for selecting features based on some criteria.
5035
/// </summary>
@@ -58,10 +43,7 @@ internal TransformsCatalog(IHostEnvironment env)
5843
Categorical = new CategoricalTransforms(this);
5944
Conversion = new ConversionTransforms(this);
6045
Text = new TextTransforms(this);
61-
KernelExpansion = new KernelExpansionTransforms(this);
6246
FeatureSelection = new FeatureSelectionTransforms(this);
63-
Normalization = new NormalizationTransforms(this);
64-
DimensionReduction = new DimensionReductionTransforms(this);
6547
}
6648

6749
/// <summary>
@@ -106,20 +88,6 @@ internal TextTransforms(TransformsCatalog owner)
10688
}
10789
}
10890

109-
/// <summary>
110-
/// The catalog of kernel methods.
111-
/// </summary>
112-
public sealed class KernelExpansionTransforms : IInternalCatalog
113-
{
114-
IHostEnvironment IInternalCatalog.Environment => _env;
115-
private readonly IHostEnvironment _env;
116-
117-
internal KernelExpansionTransforms(TransformsCatalog owner)
118-
{
119-
_env = owner.GetEnvironment();
120-
}
121-
}
122-
12391
/// <summary>
12492
/// The catalog of feature selection operations.
12593
/// </summary>
@@ -133,33 +101,5 @@ internal FeatureSelectionTransforms(TransformsCatalog owner)
133101
_env = owner.GetEnvironment();
134102
}
135103
}
136-
137-
/// <summary>
138-
/// The catalog of normalization.
139-
/// </summary>
140-
public sealed class NormalizationTransforms : IInternalCatalog
141-
{
142-
IHostEnvironment IInternalCatalog.Environment => _env;
143-
private readonly IHostEnvironment _env;
144-
145-
internal NormalizationTransforms(TransformsCatalog owner)
146-
{
147-
_env = owner.GetEnvironment();
148-
}
149-
}
150-
151-
/// <summary>
152-
/// The catalog of dimension reduction methods.
153-
/// </summary>
154-
public sealed class DimensionReductionTransforms : IInternalCatalog
155-
{
156-
IHostEnvironment IInternalCatalog.Environment => _env;
157-
private readonly IHostEnvironment _env;
158-
159-
internal DimensionReductionTransforms(TransformsCatalog owner)
160-
{
161-
_env = owner.GetEnvironment();
162-
}
163-
}
164104
}
165105
}

src/Microsoft.ML.Mkl.Components/MklComponentsCatalog.cs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ public static SymbolicStochasticGradientDescentClassificationTrainer SymbolicSto
138138
/// ]]>
139139
/// </format>
140140
/// </example>
141-
public static VectorWhiteningEstimator VectorWhiten(this TransformsCatalog.DimensionReductionTransforms catalog, string outputColumnName, string inputColumnName = null,
141+
public static VectorWhiteningEstimator VectorWhiten(this TransformsCatalog catalog, string outputColumnName, string inputColumnName = null,
142142
WhiteningKind kind = VectorWhiteningEstimator.Defaults.Kind,
143143
float epsilon = VectorWhiteningEstimator.Defaults.Epsilon,
144144
int maximumNumberOfRows = VectorWhiteningEstimator.Defaults.MaximumNumberOfRows,
@@ -158,7 +158,7 @@ public static VectorWhiteningEstimator VectorWhiten(this TransformsCatalog.Dimen
158158
/// ]]>
159159
/// </format>
160160
/// </example>
161-
public static VectorWhiteningEstimator VectorWhiten(this TransformsCatalog.DimensionReductionTransforms catalog, params VectorWhiteningEstimator.ColumnOptions[] columns)
161+
public static VectorWhiteningEstimator VectorWhiten(this TransformsCatalog catalog, params VectorWhiteningEstimator.ColumnOptions[] columns)
162162
=> new VectorWhiteningEstimator(CatalogUtils.GetEnvironment(catalog), columns);
163163

164164
}

src/Microsoft.ML.PCA/PCACatalog.cs

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ public static class PcaCatalog
2020
/// <param name="overSampling">Oversampling parameter for randomized PrincipalComponentAnalysis training.</param>
2121
/// <param name="ensureZeroMean">If enabled, data is centered to be zero mean.</param>
2222
/// <param name="seed">The seed for random number generation.</param>
23-
public static PrincipalComponentAnalysisEstimator ProjectToPrincipalComponents(this TransformsCatalog.DimensionReductionTransforms catalog,
23+
public static PrincipalComponentAnalysisEstimator ProjectToPrincipalComponents(this TransformsCatalog catalog,
2424
string outputColumnName,
2525
string inputColumnName = null,
2626
string exampleWeightColumnName = null,
@@ -34,7 +34,7 @@ public static PrincipalComponentAnalysisEstimator ProjectToPrincipalComponents(t
3434
/// <summary>Initializes a new instance of <see cref="PrincipalComponentAnalysisEstimator"/>.</summary>
3535
/// <param name="catalog">The transform's catalog.</param>
3636
/// <param name="columns">Input columns to apply PrincipalComponentAnalysis on.</param>
37-
public static PrincipalComponentAnalysisEstimator ProjectToPrincipalComponents(this TransformsCatalog.DimensionReductionTransforms catalog, params PrincipalComponentAnalysisEstimator.ColumnOptions[] columns)
37+
public static PrincipalComponentAnalysisEstimator ProjectToPrincipalComponents(this TransformsCatalog catalog, params PrincipalComponentAnalysisEstimator.ColumnOptions[] columns)
3838
=> new PrincipalComponentAnalysisEstimator(CatalogUtils.GetEnvironment(catalog), columns);
3939

4040
/// <summary>

src/Microsoft.ML.SamplesUtils/SamplesDatasetUtils.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@ public static IDataView LoadFeaturizedAdultDataset(MLContext mlContext)
172172
"occupation", "relationship", "ethnicity", "native-country", "age", "education-num",
173173
"capital-gain", "capital-loss", "hours-per-week"))
174174
// Min-max normalize all the features
175-
.Append(mlContext.Transforms.Normalization.Normalize("Features"));
175+
.Append(mlContext.Transforms.Normalize("Features"));
176176

177177
var data = loader.Load(dataFile);
178178
var featurizedData = pipeline.Fit(data).Transform(data);

src/Microsoft.ML.Transforms/KernelCatalog.cs

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -19,15 +19,16 @@ public static class KernelExpansionCatalog
1919
/// <param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName"/>.</param>
2020
/// <param name="inputColumnName">Name of column to transform. If set to <see langword="null"/>, the value of the <paramref name="outputColumnName"/> will be used as source.</param>
2121
/// <param name="dimension">The number of random Fourier features to create.</param>
22-
/// <param name="useCosAndSinBases">If <see langword="true"/>, use both of cos and sin basis functions to create two features for every random Fourier frequency. /// Otherwise, only cos bases would be used.</param>
22+
/// <param name="useCosAndSinBases">If <see langword="true"/>, use both of cos and sin basis functions to create two features for every random Fourier frequency.
23+
/// Otherwise, only cos bases would be used.</param>
2324
/// <example>
2425
/// <format type="text/markdown">
2526
/// <![CDATA[
2627
/// [!code-csharp[CreateRandomFourierFeatures](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/ProjectionTransforms.cs?range=1-6,12-112)]
2728
/// ]]>
2829
/// </format>
2930
/// </example>
30-
public static RandomFourierExpansionEstimator RandomFourierExpand(this TransformsCatalog.KernelExpansionTransforms catalog,
31+
public static RandomFourierExpansionEstimator RandomFourierExpand(this TransformsCatalog catalog,
3132
string outputColumnName,
3233
string inputColumnName = null,
3334
int dimension = RandomFourierExpansionEstimator.Defaults.Dimension,
@@ -39,7 +40,7 @@ public static RandomFourierExpansionEstimator RandomFourierExpand(this Transform
3940
/// </summary>
4041
/// <param name="catalog">The transform's catalog.</param>
4142
/// <param name="columns">The input columns to use for the transformation.</param>
42-
public static RandomFourierExpansionEstimator RandomFourierExpand(this TransformsCatalog.KernelExpansionTransforms catalog, params RandomFourierExpansionEstimator.ColumnOptions[] columns)
43+
public static RandomFourierExpansionEstimator RandomFourierExpand(this TransformsCatalog catalog, params RandomFourierExpansionEstimator.ColumnOptions[] columns)
4344
=> new RandomFourierExpansionEstimator(CatalogUtils.GetEnvironment(catalog), columns);
4445
}
4546
}

0 commit comments

Comments
 (0)