|
| 1 | +// Licensed to the .NET Foundation under one or more agreements. |
| 2 | +// The .NET Foundation licenses this file to you under the MIT license. |
| 3 | +// See the LICENSE file in the project root for more information. |
| 4 | + |
| 5 | +using Microsoft.ML.Tests; |
| 6 | +using Xunit; |
| 7 | + |
| 8 | +namespace Microsoft.ML.Scenarios |
| 9 | +{ |
| 10 | + public partial class ScenariosTests |
| 11 | + { |
| 12 | + [Fact] |
| 13 | + public void TestRegressionScenario() |
| 14 | + { |
| 15 | + var context = new MLContext(); |
| 16 | + |
| 17 | + string taxiDataPath = GetDataPath("taxi-fare-train.csv"); |
| 18 | + |
| 19 | + var taxiData = |
| 20 | + context.Data.LoadFromTextFile<FeatureContributionTests.TaxiTrip>(taxiDataPath, hasHeader: true, |
| 21 | + separatorChar: ','); |
| 22 | + |
| 23 | + var splitData = context.Data.TrainTestSplit(taxiData, testFraction: 0.1); |
| 24 | + |
| 25 | + IDataView trainingDataView = context.Data.FilterRowsByColumn(splitData.TrainSet, "FareAmount", lowerBound: 1, upperBound: 150); |
| 26 | + |
| 27 | + var dataProcessPipeline = context.Transforms.CopyColumns(outputColumnName: "Label", inputColumnName: "FareAmount") |
| 28 | + .Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "VendorIdEncoded", inputColumnName: "VendorId")) |
| 29 | + .Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "RateCodeEncoded", inputColumnName: "RateCode")) |
| 30 | + .Append(context.Transforms.Categorical.OneHotEncoding(outputColumnName: "PaymentTypeEncoded", inputColumnName: "PaymentType")) |
| 31 | + .Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "PassengerCount")) |
| 32 | + .Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripTime")) |
| 33 | + .Append(context.Transforms.NormalizeMeanVariance(outputColumnName: "TripDistance")) |
| 34 | + .Append(context.Transforms.Concatenate("Features", "VendorIdEncoded", "RateCodeEncoded", "PaymentTypeEncoded", "PassengerCount", |
| 35 | + "TripTime", "TripDistance")); |
| 36 | + |
| 37 | + var trainer = context.Regression.Trainers.Sdca(labelColumnName: "Label", featureColumnName: "Features"); |
| 38 | + var trainingPipeline = dataProcessPipeline.Append(trainer); |
| 39 | + |
| 40 | + var model = trainingPipeline.Fit(trainingDataView); |
| 41 | + |
| 42 | + var predictions = model.Transform(splitData.TestSet); |
| 43 | + |
| 44 | + var metrics = context.Regression.Evaluate(predictions); |
| 45 | + |
| 46 | + Assert.True(metrics.RSquared > .8); |
| 47 | + Assert.True(metrics.RootMeanSquaredError > 2); |
| 48 | + } |
| 49 | + } |
| 50 | +} |
0 commit comments