You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/Microsoft.ML.FastTree/FastTreeArguments.cs
+19-19Lines changed: 19 additions & 19 deletions
Original file line number
Diff line number
Diff line change
@@ -161,7 +161,7 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
161
161
/// <summary>
162
162
/// The number of threads to use.
163
163
/// </summary>
164
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The number of threads to use",ShortName="t,NumThreads",NullName="<Auto>")]
164
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The number of threads to use",ShortName="t",NullName="<Auto>")]
165
165
publicint?NumberOfThreads=null;
166
166
167
167
// this random seed is used for:
@@ -174,14 +174,14 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
174
174
/// <summary>
175
175
/// The seed of the random number generator.
176
176
/// </summary>
177
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the random number generator",ShortName="r1,RngSeed")]
177
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the random number generator",ShortName="r1")]
178
178
publicintSeed=123;
179
179
180
180
// this random seed is only for active feature selection
181
181
/// <summary>
182
182
/// The seed of the active feature selection.
183
183
/// </summary>
184
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the active feature selection",ShortName="r3,FeatureSelectSeed",Hide=true)]
184
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the active feature selection",ShortName="r3",Hide=true)]
185
185
[TGUI(NotGui=true)]
186
186
publicintFeatureSelectionSeed=123;
187
187
@@ -221,25 +221,25 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
221
221
/// </summary>
222
222
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split groups to consider when splitting on a categorical feature. "+
223
223
"Split groups are a collection of split points. This is used to reduce overfitting when "+
224
-
"there many categorical features.",ShortName="mcg,MaxCategoricalGroupsPerNode")]
224
+
"there many categorical features.",ShortName="mcg")]
225
225
publicintMaximumCategoricalGroupCountPerNode=64;
226
226
227
227
/// <summary>
228
228
/// Maximum categorical split points to consider when splitting on a categorical feature.
229
229
/// </summary>
230
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split points to consider when splitting on a categorical feature.",ShortName="maxcat,MaxCategoricalSplitPoints")]
230
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum categorical split points to consider when splitting on a categorical feature.",ShortName="maxcat")]
231
231
publicintMaximumCategoricalSplitPointCount=64;
232
232
233
233
/// <summary>
234
234
/// Minimum categorical example percentage in a bin to consider for a split. Default is 0.1% of all training examples.
235
235
/// </summary>
236
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical example percentage in a bin to consider for a split.",ShortName="mdop,MinDocsPercentageForCategoricalSplit")]
236
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical example percentage in a bin to consider for a split.",ShortName="mdop")]
/// Minimum categorical example count in a bin to consider for a split.
241
241
/// </summary>
242
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical example count in a bin to consider for a split.",ShortName="mdo,MinDocsForCategoricalSplit")]
242
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum categorical example count in a bin to consider for a split.",ShortName="mdo")]
243
243
publicintMinimumExamplesForCategoricalSplit=100;
244
244
245
245
/// <summary>
@@ -262,7 +262,7 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
262
262
/// <summary>
263
263
/// Maximum number of distinct values (bins) per feature.
264
264
/// </summary>
265
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum number of distinct values (bins) per feature",ShortName="mb,MaxBins")]
265
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum number of distinct values (bins) per feature",ShortName="mb")]
266
266
publicintMaximumBinCountPerFeature=255;// save one for undefs
267
267
268
268
/// <summary>
@@ -300,14 +300,14 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
300
300
/// <summary>
301
301
/// Print execution time breakdown to ML.NET channel.
302
302
/// </summary>
303
-
[Argument(ArgumentType.AtMostOnce,HelpText="Print execution time breakdown to stdout",ShortName="et,ExecutionTimes")]
303
+
[Argument(ArgumentType.AtMostOnce,HelpText="Print execution time breakdown to stdout",ShortName="et")]
304
304
publicboolExecutionTime;
305
305
306
306
// REVIEW: Different from original FastRank arguments (shortname l vs. nl). Different default from TLC FR Wrapper (20 vs. 20).
307
307
/// <summary>
308
308
/// The max number of leaves in each regression tree.
309
309
/// </summary>
310
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The max number of leaves in each regression tree",ShortName="nl,NumLeaves",SortOrder=2)]
310
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The max number of leaves in each regression tree",ShortName="nl",SortOrder=2)]
311
311
[TGUI(Description="The maximum number of leaves per tree",SuggestedSweeps="2-128;log;inc:4")]
@@ -317,7 +317,7 @@ public abstract class TreeOptions : TrainerInputBaseWithGroupId
317
317
/// </summary>
318
318
// REVIEW: Arrays not supported in GUI
319
319
// REVIEW: Different shortname than FastRank module. Same as the TLC FRWrapper.
320
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The minimal number of examples allowed in a leaf of a regression tree, out of the subsampled data",ShortName="mil,MinDocumentsInLeafs",SortOrder=3)]
320
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The minimal number of examples allowed in a leaf of a regression tree, out of the subsampled data",ShortName="mil",SortOrder=3)]
321
321
[TGUI(Description="Minimum number of training instances required to form a leaf",SuggestedSweeps="1,10,50")]
[Argument(ArgumentType.LastOccurenceWins,HelpText="Whether to utilize the disk or the data's native transposition facilities (where applicable) when performing the transpose",ShortName="dt")]
80
80
publicbool?DiskTranspose;
81
81
82
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum number of distinct values (bins) per feature",ShortName="mb,MaxBins")]
82
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Maximum number of distinct values (bins) per feature",ShortName="mb")]
[Argument(ArgumentType.AtMostOnce,HelpText="Sample each query 1 in k times in the GetDerivatives function",ShortName="sr")]
89
89
publicintGetDerivativesSampleRate=1;
90
90
91
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the random number generator",ShortName="r1,RngSeed")]
91
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="The seed of the random number generator",ShortName="r1")]
92
92
publicintSeed=123;
93
93
94
-
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum number of training instances required to form a partition",ShortName="mi,MinDocuments",SortOrder=3)]
94
+
[Argument(ArgumentType.LastOccurenceWins,HelpText="Minimum number of training instances required to form a partition",ShortName="mi",SortOrder=3)]
[Argument(ArgumentType.AtMostOnce,HelpText="Number of labels to be sampled from each leaf to make the distribtuion",ShortName="qsc,QuantileSampleCount")]
34
+
[Argument(ArgumentType.AtMostOnce,HelpText="Number of labels to be sampled from each leaf to make the distribtuion",ShortName="qsc")]
35
35
publicintNumberOfQuantileSamples=100;
36
36
37
37
publicFastForestOptionsBase()
@@ -110,7 +110,7 @@ public sealed partial class FastForestClassification :
110
110
{
111
111
publicsealedclassOptions:FastForestOptionsBase
112
112
{
113
-
[Argument(ArgumentType.AtMostOnce,HelpText="Upper bound on absolute value of single tree output",ShortName="mo,MaxTreeOutput")]
113
+
[Argument(ArgumentType.AtMostOnce,HelpText="Upper bound on absolute value of single tree output",ShortName="mo")]
114
114
publicDoubleMaximumOutputMagnitudePerTree=100;
115
115
116
116
[Argument(ArgumentType.AtMostOnce,HelpText="The calibrator kind to apply to the predictor. Specify null for no calibration",Visibility=ArgumentAttribute.VisibilityType.EntryPointsOnly)]
0 commit comments