@@ -110,22 +110,22 @@ public abstract class OptionsBase : LearnerInputBaseWithWeight
110
110
private const string RegisterName = "GamTraining" ;
111
111
112
112
//Parameters of training
113
- internal readonly TArgs Args ;
113
+ private protected readonly TArgs Args ;
114
114
private readonly double _gainConfidenceInSquaredStandardDeviations ;
115
115
private readonly double _entropyCoefficient ;
116
116
117
117
//Dataset information
118
- internal Dataset TrainSet ;
119
- internal Dataset ValidSet ;
118
+ private protected Dataset TrainSet ;
119
+ private protected Dataset ValidSet ;
120
120
/// <summary>
121
121
/// Whether a validation set was passed in
122
122
/// </summary>
123
- internal bool HasValidSet => ValidSet != null ;
124
- internal ScoreTracker TrainSetScore ;
125
- internal ScoreTracker ValidSetScore ;
126
- internal TestHistory PruningTest ;
127
- internal int PruningLossIndex ;
128
- internal int InputLength ;
123
+ private protected bool HasValidSet => ValidSet != null ;
124
+ private protected ScoreTracker TrainSetScore ;
125
+ private protected ScoreTracker ValidSetScore ;
126
+ private protected TestHistory PruningTest ;
127
+ private protected int PruningLossIndex ;
128
+ private protected int InputLength ;
129
129
private LeastSquaresRegressionTreeLearner . LeafSplitCandidates _leafSplitCandidates ;
130
130
private SufficientStatsBase [ ] _histogram ;
131
131
private ILeafSplitStatisticsCalculator _leafSplitHelper ;
@@ -136,10 +136,10 @@ public abstract class OptionsBase : LearnerInputBaseWithWeight
136
136
private SubGraph _subGraph ;
137
137
138
138
//Results of training
139
- internal double MeanEffect ;
140
- internal double [ ] [ ] BinEffects ;
141
- internal double [ ] [ ] BinUpperBounds ;
142
- internal int [ ] FeatureMap ;
139
+ private protected double MeanEffect ;
140
+ private protected double [ ] [ ] BinEffects ;
141
+ private protected double [ ] [ ] BinUpperBounds ;
142
+ private protected int [ ] FeatureMap ;
143
143
144
144
public override TrainerInfo Info { get ; }
145
145
private protected virtual bool NeedCalibration => false ;
@@ -224,7 +224,7 @@ private void DefineScoreTrackers()
224
224
ValidSetScore = new ScoreTracker ( "valid" , ValidSet , null ) ;
225
225
}
226
226
227
- internal abstract void DefinePruningTest ( ) ;
227
+ private protected abstract void DefinePruningTest ( ) ;
228
228
229
229
private protected abstract void CheckLabel ( RoleMappedData data ) ;
230
230
@@ -520,7 +520,7 @@ private void CenterGraph()
520
520
/// Process bins such that only bin upper bounds and bin effects remain where
521
521
/// the effect changes.
522
522
/// </summary>
523
- internal void CreateEfficientBinning ( )
523
+ private protected void CreateEfficientBinning ( )
524
524
{
525
525
BinUpperBounds = new double [ TrainSet . NumFeatures ] [ ] ;
526
526
var newBinEffects = new List < double > ( ) ;
@@ -595,7 +595,7 @@ private void InitializeThreads()
595
595
ThreadTaskManager . Initialize ( numThreads ) ;
596
596
}
597
597
598
- internal abstract ObjectiveFunctionBase CreateObjectiveFunction ( ) ;
598
+ private protected abstract ObjectiveFunctionBase CreateObjectiveFunction ( ) ;
599
599
600
600
private class LeafSplitHelper : ILeafSplitStatisticsCalculator
601
601
{
0 commit comments