Skip to content

Commit f8663e8

Browse files
committed
Update core_ep-list.tsv
1 parent 58aa330 commit f8663e8

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

src/Microsoft.ML.FastTree/Properties/AssemblyInfo.cs

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,6 @@
66
using Microsoft.ML;
77

88
[assembly: InternalsVisibleTo(assemblyName: "Microsoft.ML.Core.Tests" + PublicKey.TestValue)]
9-
[assembly: InternalsVisibleTo(assemblyName: "Microsoft.ML.LightGBM" + PublicKey.TestValue)]
9+
[assembly: InternalsVisibleTo(assemblyName: "Microsoft.ML.LightGBM" + PublicKey.Value)]
1010

1111
[assembly: WantsToBeBestFriends]

test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ Trainers.FastTreeTweedieRegressor Trains gradient boosted decision trees to fit
5757
Trainers.FieldAwareFactorizationMachineBinaryClassifier Train a field-aware factorization machine for binary classification Microsoft.ML.Runtime.FactorizationMachine.FieldAwareFactorizationMachineTrainer TrainBinary Microsoft.ML.Runtime.FactorizationMachine.FieldAwareFactorizationMachineTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
5858
Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Trainers.FastTree.Gam TrainBinary Microsoft.ML.Trainers.FastTree.BinaryClassificationGamTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
5959
Trainers.GeneralizedAdditiveModelRegressor Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Trainers.FastTree.Gam TrainRegression Microsoft.ML.Trainers.FastTree.RegressionGamTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
60-
Trainers.KMeansPlusPlusClusterer K-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers. Microsoft.ML.Trainers.KMeans.KMeansPlusPlusTrainer TrainKMeans Microsoft.ML.Trainers.KMeans.KMeansPlusPlusTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+ClusteringOutput
60+
Trainers.KMeansPlusPlusClusterer K-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers. Microsoft.ML.KMeansClustering.KMeansPlusPlusTrainer TrainKMeans Microsoft.ML.KMeansClustering.KMeansPlusPlusTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+ClusteringOutput
6161
Trainers.LightGbmBinaryClassifier Train a LightGBM binary classification model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainBinary Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
6262
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainMultiClass Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
6363
Trainers.LightGbmRanker Train a LightGBM ranking model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainRanking Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RankingOutput

0 commit comments

Comments
 (0)