diff --git a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/StochasticDualCoordinateAscentWithOptions.cs b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/StochasticDualCoordinateAscentWithOptions.cs
index c8cb69676d..97475cf45f 100644
--- a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/StochasticDualCoordinateAscentWithOptions.cs
+++ b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/BinaryClassification/StochasticDualCoordinateAscentWithOptions.cs
@@ -27,7 +27,7 @@ public static void Example()
// Make the convergence tolerance tighter.
ConvergenceTolerance = 0.05f,
// Increase the maximum number of passes over training data.
- NumberOfIterations = 30,
+ MaximumNumberOfIterations = 30,
// Give the instances of the positive class slightly more weight.
PositiveInstanceWeight = 1.2f,
};
diff --git a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeans.cs b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeans.cs
index 545e65f61a..fb9c867e95 100644
--- a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeans.cs
+++ b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeans.cs
@@ -27,7 +27,7 @@ public static void Example()
// A pipeline for concatenating the age, parity and induced columns together in the Features column and training a KMeans model on them.
string outputColumnName = "Features";
var pipeline = ml.Transforms.Concatenate(outputColumnName, new[] { "Age", "Parity", "Induced" })
- .Append(ml.Clustering.Trainers.KMeans(outputColumnName, clustersCount: 2));
+ .Append(ml.Clustering.Trainers.KMeans(outputColumnName, numberOfClusters: 2));
var model = pipeline.Fit(trainData);
diff --git a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeansWithOptions.cs b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeansWithOptions.cs
index c1cc97d7f8..2ffca06920 100644
--- a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeansWithOptions.cs
+++ b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Clustering/KMeansWithOptions.cs
@@ -33,7 +33,7 @@ public static void Example()
{
FeatureColumnName = outputColumnName,
NumberOfClusters = 2,
- NumberOfIterations = 100,
+ MaximumNumberOfIterations = 100,
OptimizationTolerance = 1e-6f,
NumberOfThreads = 1
}
diff --git a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/StochasticDualCoordinateAscentWithOptions.cs b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/StochasticDualCoordinateAscentWithOptions.cs
index 600d642365..d803137ce4 100644
--- a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/StochasticDualCoordinateAscentWithOptions.cs
+++ b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/MulticlassClassification/StochasticDualCoordinateAscentWithOptions.cs
@@ -33,7 +33,7 @@ public static void Example()
// Make the convergence tolerance tighter.
ConvergenceTolerance = 0.05f,
// Increase the maximum number of passes over training data.
- NumberOfIterations = 30,
+ MaximumNumberOfIterations = 30,
};
// Create a pipeline.
diff --git a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/StochasticDualCoordinateAscentWithOptions.cs b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/StochasticDualCoordinateAscentWithOptions.cs
index fc743d8f41..5cb29da11c 100644
--- a/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/StochasticDualCoordinateAscentWithOptions.cs
+++ b/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/StochasticDualCoordinateAscentWithOptions.cs
@@ -26,7 +26,7 @@ public static void Example()
// Make the convergence tolerance tighter.
ConvergenceTolerance = 0.02f,
// Increase the maximum number of passes over training data.
- NumberOfIterations = 30,
+ MaximumNumberOfIterations = 30,
// Increase learning rate for bias
BiasLearningRate = 0.1f
};
diff --git a/src/Microsoft.ML.KMeansClustering/KMeansCatalog.cs b/src/Microsoft.ML.KMeansClustering/KMeansCatalog.cs
index df6d5091e9..2e2c532357 100644
--- a/src/Microsoft.ML.KMeansClustering/KMeansCatalog.cs
+++ b/src/Microsoft.ML.KMeansClustering/KMeansCatalog.cs
@@ -20,7 +20,7 @@ public static class KMeansClusteringExtensions
/// The clustering catalog trainer object.
/// The name of the feature column.
/// The name of the example weight column (optional).
- /// The number of clusters to use for KMeans.
+ /// The number of clusters to use for KMeans.
///
///
///
[Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations.", ShortName = "maxiter")]
[TGUI(Label = "Max Number of Iterations")]
- public int NumberOfIterations = 1000;
+ public int MaximumNumberOfIterations = 1000;
///
/// Memory budget (in MBs) to use for KMeans acceleration.
@@ -125,8 +125,8 @@ internal KMeansPlusPlusTrainer(IHostEnvironment env, Options options)
_k = options.NumberOfClusters;
- Host.CheckUserArg(options.NumberOfIterations > 0, nameof(options.NumberOfIterations), "Must be positive");
- _maxIterations = options.NumberOfIterations;
+ Host.CheckUserArg(options.MaximumNumberOfIterations > 0, nameof(options.MaximumNumberOfIterations), "Must be positive");
+ _maxIterations = options.MaximumNumberOfIterations;
Host.CheckUserArg(options.OptimizationTolerance > 0, nameof(options.OptimizationTolerance), "Tolerance must be positive");
_convergenceThreshold = options.OptimizationTolerance;
diff --git a/src/Microsoft.ML.StandardLearners/Standard/SdcaBinary.cs b/src/Microsoft.ML.StandardLearners/Standard/SdcaBinary.cs
index 4dccfa7526..be9d1d35db 100644
--- a/src/Microsoft.ML.StandardLearners/Standard/SdcaBinary.cs
+++ b/src/Microsoft.ML.StandardLearners/Standard/SdcaBinary.cs
@@ -200,7 +200,7 @@ public abstract class OptionsBase : TrainerInputBaseWithLabel
[Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", NullName = "", ShortName = "iter, MaxIterations")]
[TGUI(Label = "Max number of iterations", SuggestedSweeps = ",10,20,100")]
[TlcModule.SweepableDiscreteParam("MaxIterations", new object[] { "", 10, 20, 100 })]
- public int? NumberOfIterations;
+ public int? MaximumNumberOfIterations;
///
/// Determines whether to shuffle data for each training iteration.
@@ -235,7 +235,7 @@ internal virtual void Check(IHostEnvironment env)
Contracts.AssertValue(env);
env.CheckUserArg(L2Regularization == null || L2Regularization >= 0, nameof(L2Regularization), "L2 constant must be non-negative.");
env.CheckUserArg(L1Threshold == null || L1Threshold >= 0, nameof(L1Threshold), "L1 threshold must be non-negative.");
- env.CheckUserArg(NumberOfIterations == null || NumberOfIterations > 0, nameof(NumberOfIterations), "Max number of iterations must be positive.");
+ env.CheckUserArg(MaximumNumberOfIterations == null || MaximumNumberOfIterations > 0, nameof(MaximumNumberOfIterations), "Max number of iterations must be positive.");
env.CheckUserArg(ConvergenceTolerance > 0 && ConvergenceTolerance <= 1, nameof(ConvergenceTolerance), "Convergence tolerance must be positive and no larger than 1.");
if (L2Regularization < L2LowerBound)
@@ -303,7 +303,7 @@ internal SdcaTrainerBase(IHostEnvironment env, TOptions options, SchemaShape.Col
SdcaTrainerOptions = options;
SdcaTrainerOptions.L2Regularization = l2Const ?? options.L2Regularization;
SdcaTrainerOptions.L1Threshold = l1Threshold ?? options.L1Threshold;
- SdcaTrainerOptions.NumberOfIterations = maxIterations ?? options.NumberOfIterations;
+ SdcaTrainerOptions.MaximumNumberOfIterations = maxIterations ?? options.MaximumNumberOfIterations;
SdcaTrainerOptions.Check(env);
}
@@ -442,12 +442,12 @@ private protected sealed override TModel TrainCore(IChannel ch, RoleMappedData d
ch.Check(count > 0, "Training set has 0 instances, aborting training.");
// Tune the default hyperparameters based on dataset size.
- if (SdcaTrainerOptions.NumberOfIterations == null)
- SdcaTrainerOptions.NumberOfIterations = TuneDefaultMaxIterations(ch, count, numThreads);
+ if (SdcaTrainerOptions.MaximumNumberOfIterations == null)
+ SdcaTrainerOptions.MaximumNumberOfIterations = TuneDefaultMaxIterations(ch, count, numThreads);
- Contracts.Assert(SdcaTrainerOptions.NumberOfIterations.HasValue);
+ Contracts.Assert(SdcaTrainerOptions.MaximumNumberOfIterations.HasValue);
if (SdcaTrainerOptions.L2Regularization == null)
- SdcaTrainerOptions.L2Regularization = TuneDefaultL2(ch, SdcaTrainerOptions.NumberOfIterations.Value, count, numThreads);
+ SdcaTrainerOptions.L2Regularization = TuneDefaultL2(ch, SdcaTrainerOptions.MaximumNumberOfIterations.Value, count, numThreads);
Contracts.Assert(SdcaTrainerOptions.L2Regularization.HasValue);
if (SdcaTrainerOptions.L1Threshold == null)
@@ -547,8 +547,8 @@ private protected sealed override TModel TrainCore(IChannel ch, RoleMappedData d
ch.AssertValue(metricNames);
ch.AssertValue(metrics);
ch.Assert(metricNames.Length == metrics.Length);
- ch.Assert(SdcaTrainerOptions.NumberOfIterations.HasValue);
- var maxIterations = SdcaTrainerOptions.NumberOfIterations.Value;
+ ch.Assert(SdcaTrainerOptions.MaximumNumberOfIterations.HasValue);
+ var maxIterations = SdcaTrainerOptions.MaximumNumberOfIterations.Value;
var rands = new Random[maxIterations];
for (int i = 0; i < maxIterations; i++)
diff --git a/src/Microsoft.ML.StandardLearners/StandardLearnersCatalog.cs b/src/Microsoft.ML.StandardLearners/StandardLearnersCatalog.cs
index f32c45ff85..934956274a 100644
--- a/src/Microsoft.ML.StandardLearners/StandardLearnersCatalog.cs
+++ b/src/Microsoft.ML.StandardLearners/StandardLearnersCatalog.cs
@@ -132,7 +132,7 @@ public static SgdNonCalibratedBinaryTrainer StochasticGradientDescentNonCalibrat
/// The name of the example weight column (optional).
/// The L2 regularization hyperparameter.
/// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.
- /// The maximum number of passes to perform over the data.
+ /// The maximum number of passes to perform over the data.
/// The custom loss, if unspecified will be .
///
///
@@ -147,11 +147,11 @@ public static SdcaRegressionTrainer StochasticDualCoordinateAscent(this Regressi
ISupportSdcaRegressionLoss loss = null,
float? l2Regularization = null,
float? l1Threshold = null,
- int? numberOfIterations = null)
+ int? maximumNumberOfIterations = null)
{
Contracts.CheckValue(catalog, nameof(catalog));
var env = CatalogUtils.GetEnvironment(catalog);
- return new SdcaRegressionTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, loss, l2Regularization, l1Threshold, numberOfIterations);
+ return new SdcaRegressionTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, loss, l2Regularization, l1Threshold, maximumNumberOfIterations);
}
///
@@ -184,7 +184,7 @@ public static SdcaRegressionTrainer StochasticDualCoordinateAscent(this Regressi
/// The name of the example weight column (optional).
/// The L2 regularization hyperparameter.
/// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.
- /// The maximum number of passes to perform over the data.
+ /// The maximum number of passes to perform over the data.
///
///
///
@@ -237,7 +237,7 @@ public static SdcaBinaryTrainer StochasticDualCoordinateAscent(
/// The custom loss. Defaults to if not specified.
/// The L2 regularization hyperparameter.
/// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.
- /// The maximum number of passes to perform over the data.
+ /// The maximum number of passes to perform over the data.
///
///
///
@@ -285,7 +285,7 @@ public static SdcaNonCalibratedBinaryTrainer StochasticDualCoordinateAscentNonCa
/// The custom loss. Defaults to if not specified.
/// The L2 regularization hyperparameter.
/// The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.
- /// The maximum number of passes to perform over the data.
+ /// The maximum number of passes to perform over the data.
///
///
///
diff --git a/test/BaselineOutput/Common/EntryPoints/core_manifest.json b/test/BaselineOutput/Common/EntryPoints/core_manifest.json
index 6caab60446..d11ed1fadc 100644
--- a/test/BaselineOutput/Common/EntryPoints/core_manifest.json
+++ b/test/BaselineOutput/Common/EntryPoints/core_manifest.json
@@ -11019,7 +11019,7 @@
"Default": 1E-07
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum number of iterations.",
"Aliases": [
@@ -15221,7 +15221,7 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
@@ -15494,7 +15494,7 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
@@ -15767,7 +15767,7 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
diff --git a/test/Microsoft.ML.Functional.Tests/IntrospectiveTraining.cs b/test/Microsoft.ML.Functional.Tests/IntrospectiveTraining.cs
index 69d8773fc9..894a2e6568 100644
--- a/test/Microsoft.ML.Functional.Tests/IntrospectiveTraining.cs
+++ b/test/Microsoft.ML.Functional.Tests/IntrospectiveTraining.cs
@@ -425,7 +425,7 @@ private IEstimator (r.label, score: catalog.Trainers.Sdca(r.label, r.features, null,
- new SdcaRegressionTrainer.Options() { NumberOfIterations = 2, NumberOfThreads = 1 },
+ new SdcaRegressionTrainer.Options() { MaximumNumberOfIterations = 2, NumberOfThreads = 1 },
onFit: p => pred = p)));
var pipe = reader.Append(est);
@@ -87,7 +87,7 @@ public void SdcaRegressionNameCollision()
var est = reader.MakeNewEstimator()
.Append(r => (r.label, r.Score, score: catalog.Trainers.Sdca(r.label, r.features, null,
- new SdcaRegressionTrainer.Options() { NumberOfIterations = 2, NumberOfThreads = 1 })));
+ new SdcaRegressionTrainer.Options() { MaximumNumberOfIterations = 2, NumberOfThreads = 1 })));
var pipe = reader.Append(est);
@@ -118,7 +118,7 @@ public void SdcaBinaryClassification()
var est = reader.MakeNewEstimator()
.Append(r => (r.label, preds: catalog.Trainers.Sdca(r.label, r.features, null,
- new SdcaBinaryTrainer.Options { NumberOfIterations = 2, NumberOfThreads = 1 },
+ new SdcaBinaryTrainer.Options { MaximumNumberOfIterations = 2, NumberOfThreads = 1 },
onFit: (p) => { pred = p; })));
var pipe = reader.Append(est);
@@ -198,7 +198,7 @@ public void SdcaBinaryClassificationNoCalibration()
// With a custom loss function we no longer get calibrated predictions.
var est = reader.MakeNewEstimator()
.Append(r => (r.label, preds: catalog.Trainers.SdcaNonCalibrated(r.label, r.features, null, loss,
- new SdcaNonCalibratedBinaryTrainer.Options { NumberOfIterations = 2, NumberOfThreads = 1 },
+ new SdcaNonCalibratedBinaryTrainer.Options { MaximumNumberOfIterations = 2, NumberOfThreads = 1 },
onFit: p => pred = p)));
var pipe = reader.Append(est);
diff --git a/test/Microsoft.ML.Tests/OnnxConversionTest.cs b/test/Microsoft.ML.Tests/OnnxConversionTest.cs
index 7fd4a76a71..4705d1f2e8 100644
--- a/test/Microsoft.ML.Tests/OnnxConversionTest.cs
+++ b/test/Microsoft.ML.Tests/OnnxConversionTest.cs
@@ -140,7 +140,7 @@ public void KmeansOnnxConversionTest()
Append(mlContext.Clustering.Trainers.KMeans(new Trainers.KMeansPlusPlusTrainer.Options
{
FeatureColumnName = DefaultColumnNames.Features,
- NumberOfIterations = 1,
+ MaximumNumberOfIterations = 1,
NumberOfClusters = 4,
NumberOfThreads = 1,
InitializationAlgorithm = Trainers.KMeansPlusPlusTrainer.InitializationAlgorithm.Random
diff --git a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/DecomposableTrainAndPredict.cs b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/DecomposableTrainAndPredict.cs
index 154a9f36b1..b4e82c1f09 100644
--- a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/DecomposableTrainAndPredict.cs
+++ b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/DecomposableTrainAndPredict.cs
@@ -32,7 +32,7 @@ void DecomposableTrainAndPredict()
var pipeline = new ColumnConcatenatingEstimator (ml, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
.Append(new ValueToKeyMappingEstimator(ml, "Label"), TransformerScope.TrainTest)
.Append(ml.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(
- new SdcaMultiClassTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, }))
+ new SdcaMultiClassTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, }))
.Append(new KeyToValueMappingEstimator(ml, "PredictedLabel"));
var model = pipeline.Fit(data).GetModelFor(TransformerScope.Scoring);
diff --git a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Extensibility.cs b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Extensibility.cs
index f96665d08a..9517cd45d6 100644
--- a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Extensibility.cs
+++ b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Extensibility.cs
@@ -41,7 +41,7 @@ void Extensibility()
.Append(new CustomMappingEstimator(ml, action, null), TransformerScope.TrainTest)
.Append(new ValueToKeyMappingEstimator(ml, "Label"), TransformerScope.TrainTest)
.Append(ml.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(
- new SdcaMultiClassTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 }))
+ new SdcaMultiClassTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 }))
.Append(new KeyToValueMappingEstimator(ml, "PredictedLabel"));
var model = pipeline.Fit(data).GetModelFor(TransformerScope.Scoring);
diff --git a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Metacomponents.cs b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Metacomponents.cs
index 63264e6b85..6f909cef69 100644
--- a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Metacomponents.cs
+++ b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/Metacomponents.cs
@@ -24,7 +24,7 @@ public void Metacomponents()
var data = ml.Data.LoadFromTextFile(GetDataPath(TestDatasets.irisData.trainFilename), separatorChar: ',');
var sdcaTrainer = ml.BinaryClassification.Trainers.StochasticDualCoordinateAscentNonCalibrated(
- new SdcaNonCalibratedBinaryTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, });
+ new SdcaNonCalibratedBinaryTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, });
var pipeline = new ColumnConcatenatingEstimator (ml, "Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
.Append(ml.Transforms.Conversion.MapValueToKey("Label"), TransformerScope.TrainTest)
diff --git a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/PredictAndMetadata.cs b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/PredictAndMetadata.cs
index 6937df3644..7c166f81f3 100644
--- a/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/PredictAndMetadata.cs
+++ b/test/Microsoft.ML.Tests/Scenarios/Api/Estimators/PredictAndMetadata.cs
@@ -30,7 +30,7 @@ void PredictAndMetadata()
var pipeline = ml.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth")
.Append(ml.Transforms.Conversion.MapValueToKey("Label"), TransformerScope.TrainTest)
.Append(ml.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(
- new SdcaMultiClassTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, }));
+ new SdcaMultiClassTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1, }));
var model = pipeline.Fit(data).GetModelFor(TransformerScope.Scoring);
var engine = model.CreatePredictionEngine(ml);
diff --git a/test/Microsoft.ML.Tests/Scenarios/ClusteringTests.cs b/test/Microsoft.ML.Tests/Scenarios/ClusteringTests.cs
index bc8bb8c404..ef95c95b45 100644
--- a/test/Microsoft.ML.Tests/Scenarios/ClusteringTests.cs
+++ b/test/Microsoft.ML.Tests/Scenarios/ClusteringTests.cs
@@ -63,7 +63,7 @@ public void PredictClusters()
var testData = mlContext.Data.LoadFromEnumerable(clusters);
// Create Estimator
- var pipe = mlContext.Clustering.Trainers.KMeans("Features", clustersCount: k);
+ var pipe = mlContext.Clustering.Trainers.KMeans("Features", numberOfClusters: k);
// Train the pipeline
var trainedModel = pipe.Fit(trainData);
diff --git a/test/Microsoft.ML.Tests/TrainerEstimators/MetalinearEstimators.cs b/test/Microsoft.ML.Tests/TrainerEstimators/MetalinearEstimators.cs
index 614ae4397c..51df6e7189 100644
--- a/test/Microsoft.ML.Tests/TrainerEstimators/MetalinearEstimators.cs
+++ b/test/Microsoft.ML.Tests/TrainerEstimators/MetalinearEstimators.cs
@@ -42,7 +42,7 @@ public void OVAUncalibrated()
{
var (pipeline, data) = GetMultiClassPipeline();
var sdcaTrainer = ML.BinaryClassification.Trainers.StochasticDualCoordinateAscentNonCalibrated(
- new SdcaNonCalibratedBinaryTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 });
+ new SdcaNonCalibratedBinaryTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 });
pipeline = pipeline.Append(ML.MulticlassClassification.Trainers.OneVersusAll(sdcaTrainer, useProbabilities: false))
.Append(new KeyToValueMappingEstimator(Env, "PredictedLabel"));
@@ -60,7 +60,7 @@ public void PairwiseCouplingTrainer()
var (pipeline, data) = GetMultiClassPipeline();
var sdcaTrainer = ML.BinaryClassification.Trainers.StochasticDualCoordinateAscentNonCalibrated(
- new SdcaNonCalibratedBinaryTrainer.Options { NumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 });
+ new SdcaNonCalibratedBinaryTrainer.Options { MaximumNumberOfIterations = 100, Shuffle = true, NumberOfThreads = 1 });
pipeline = pipeline.Append(ML.MulticlassClassification.Trainers.PairwiseCoupling(sdcaTrainer))
.Append(ML.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
@@ -86,7 +86,7 @@ public void MetacomponentsFeaturesRenamed()
new SdcaNonCalibratedBinaryTrainer.Options {
LabelColumnName = "Label",
FeatureColumnName = "Vars",
- NumberOfIterations = 100,
+ MaximumNumberOfIterations = 100,
Shuffle = true,
NumberOfThreads = 1, });