diff --git a/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs b/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs
index 498fa2c861..2561f917a7 100644
--- a/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs
+++ b/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs
@@ -78,7 +78,7 @@ public sealed class Options : UnsupervisedTrainerInputBaseWithWeight
///
/// Maximum number of iterations.
///
- [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations.", ShortName = "maxiter")]
+ [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations.", ShortName = "maxiter, NumberOfIterations")]
[TGUI(Label = "Max Number of Iterations")]
public int MaximumNumberOfIterations = 1000;
diff --git a/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs b/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs
index 799b2eb26f..4bb402f376 100644
--- a/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs
+++ b/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs
@@ -59,10 +59,10 @@ public abstract class OptionsBase : TrainerInputBaseWithWeight
///
/// Number of iterations.
///
- [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum iterations.", ShortName = "maxiter, MaxIterations")]
+ [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum iterations.", ShortName = "maxiter, MaxIterations, NumberOfIterations")]
[TGUI(Label = "Max Number of Iterations")]
[TlcModule.SweepableLongParamAttribute("MaxIterations", 1, int.MaxValue)]
- public int NumberOfIterations = Defaults.NumberOfIterations;
+ public int MaximumNumberOfIterations = Defaults.MaximumNumberOfIterations;
///
/// Run SGD to initialize LR weights, converging to this tolerance.
@@ -122,7 +122,7 @@ internal static class Defaults
public const float L1Regularization = 1;
public const float OptimizationTolerance = 1e-7f;
public const int HistorySize = 20;
- public const int NumberOfIterations = int.MaxValue;
+ public const int MaximumNumberOfIterations = int.MaxValue;
public const bool EnforceNonNegativity = false;
}
}
@@ -221,7 +221,7 @@ internal LbfgsTrainerBase(IHostEnvironment env,
Host.CheckUserArg(LbfgsTrainerOptions.L1Regularization >= 0, nameof(LbfgsTrainerOptions.L1Regularization), "Must be non-negative");
Host.CheckUserArg(LbfgsTrainerOptions.OptmizationTolerance > 0, nameof(LbfgsTrainerOptions.OptmizationTolerance), "Must be positive");
Host.CheckUserArg(LbfgsTrainerOptions.HistorySize > 0, nameof(LbfgsTrainerOptions.HistorySize), "Must be positive");
- Host.CheckUserArg(LbfgsTrainerOptions.NumberOfIterations > 0, nameof(LbfgsTrainerOptions.NumberOfIterations), "Must be positive");
+ Host.CheckUserArg(LbfgsTrainerOptions.MaximumNumberOfIterations > 0, nameof(LbfgsTrainerOptions.MaximumNumberOfIterations), "Must be positive");
Host.CheckUserArg(LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance >= 0, nameof(LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance), "Must be non-negative");
Host.CheckUserArg(LbfgsTrainerOptions.NumberOfThreads == null || LbfgsTrainerOptions.NumberOfThreads.Value >= 0, nameof(LbfgsTrainerOptions.NumberOfThreads), "Must be non-negative");
@@ -234,7 +234,7 @@ internal LbfgsTrainerBase(IHostEnvironment env,
L1Weight = LbfgsTrainerOptions.L1Regularization;
OptTol = LbfgsTrainerOptions.OptmizationTolerance;
MemorySize =LbfgsTrainerOptions.HistorySize;
- MaxIterations = LbfgsTrainerOptions.NumberOfIterations;
+ MaxIterations = LbfgsTrainerOptions.MaximumNumberOfIterations;
SgdInitializationTolerance = LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance;
Quiet = LbfgsTrainerOptions.Quiet;
InitWtsDiameter = LbfgsTrainerOptions.InitialWeightsDiameter;
diff --git a/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs b/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs
index 991c79d246..fd4da0336d 100644
--- a/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs
+++ b/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs
@@ -198,7 +198,7 @@ public abstract class OptionsBase : TrainerInputBaseWithLabel
///
/// Set to 1 to simulate online learning. Defaults to automatic.
///
- [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", NullName = "", ShortName = "iter, MaxIterations")]
+ [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", NullName = "", ShortName = "iter, MaxIterations, NumberOfIterations")]
[TGUI(Label = "Max number of iterations", SuggestedSweeps = ",10,20,100")]
[TlcModule.SweepableDiscreteParam("MaxIterations", new object[] { "", 10, 20, 100 })]
public int? MaximumNumberOfIterations;
diff --git a/test/BaselineOutput/Common/EntryPoints/core_manifest.json b/test/BaselineOutput/Common/EntryPoints/core_manifest.json
index bb728063a0..5c8414eca2 100644
--- a/test/BaselineOutput/Common/EntryPoints/core_manifest.json
+++ b/test/BaselineOutput/Common/EntryPoints/core_manifest.json
@@ -11026,7 +11026,8 @@
"Type": "Int",
"Desc": "Maximum number of iterations.",
"Aliases": [
- "maxiter"
+ "maxiter",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -13559,12 +13560,13 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum iterations.",
"Aliases": [
"maxiter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -13879,12 +13881,13 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum iterations.",
"Aliases": [
"maxiter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -14907,12 +14910,13 @@
}
},
{
- "Name": "NumberOfIterations",
+ "Name": "MaximumNumberOfIterations",
"Type": "Int",
"Desc": "Maximum iterations.",
"Aliases": [
"maxiter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -15233,7 +15237,8 @@
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
"iter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -15506,7 +15511,8 @@
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
"iter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
@@ -15779,7 +15785,8 @@
"Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.",
"Aliases": [
"iter",
- "MaxIterations"
+ "MaxIterations",
+ "NumberOfIterations"
],
"Required": false,
"SortOrder": 150.0,
diff --git a/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs b/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs
index 51dedb1fbd..51c700d74d 100644
--- a/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs
+++ b/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs
@@ -270,7 +270,7 @@ public void TestPfiMulticlassClassificationOnSparseFeatures()
{
var data = GetSparseDataset(TaskType.MulticlassClassification);
var model = ML.MulticlassClassification.Trainers.LogisticRegression(
- new MulticlassLogisticRegression.Options { NumberOfIterations = 1000 }).Fit(data);
+ new MulticlassLogisticRegression.Options { MaximumNumberOfIterations = 1000 }).Fit(data);
var pfi = ML.MulticlassClassification.PermutationFeatureImportance(model, data);
// Pfi Indices: