diff --git a/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs b/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs index 498fa2c861..2561f917a7 100644 --- a/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs +++ b/src/Microsoft.ML.KMeansClustering/KMeansPlusPlusTrainer.cs @@ -78,7 +78,7 @@ public sealed class Options : UnsupervisedTrainerInputBaseWithWeight /// /// Maximum number of iterations. /// - [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations.", ShortName = "maxiter")] + [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations.", ShortName = "maxiter, NumberOfIterations")] [TGUI(Label = "Max Number of Iterations")] public int MaximumNumberOfIterations = 1000; diff --git a/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs b/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs index 799b2eb26f..4bb402f376 100644 --- a/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs +++ b/src/Microsoft.ML.StandardTrainers/Standard/LogisticRegression/LbfgsPredictorBase.cs @@ -59,10 +59,10 @@ public abstract class OptionsBase : TrainerInputBaseWithWeight /// /// Number of iterations. /// - [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum iterations.", ShortName = "maxiter, MaxIterations")] + [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum iterations.", ShortName = "maxiter, MaxIterations, NumberOfIterations")] [TGUI(Label = "Max Number of Iterations")] [TlcModule.SweepableLongParamAttribute("MaxIterations", 1, int.MaxValue)] - public int NumberOfIterations = Defaults.NumberOfIterations; + public int MaximumNumberOfIterations = Defaults.MaximumNumberOfIterations; /// /// Run SGD to initialize LR weights, converging to this tolerance. @@ -122,7 +122,7 @@ internal static class Defaults public const float L1Regularization = 1; public const float OptimizationTolerance = 1e-7f; public const int HistorySize = 20; - public const int NumberOfIterations = int.MaxValue; + public const int MaximumNumberOfIterations = int.MaxValue; public const bool EnforceNonNegativity = false; } } @@ -221,7 +221,7 @@ internal LbfgsTrainerBase(IHostEnvironment env, Host.CheckUserArg(LbfgsTrainerOptions.L1Regularization >= 0, nameof(LbfgsTrainerOptions.L1Regularization), "Must be non-negative"); Host.CheckUserArg(LbfgsTrainerOptions.OptmizationTolerance > 0, nameof(LbfgsTrainerOptions.OptmizationTolerance), "Must be positive"); Host.CheckUserArg(LbfgsTrainerOptions.HistorySize > 0, nameof(LbfgsTrainerOptions.HistorySize), "Must be positive"); - Host.CheckUserArg(LbfgsTrainerOptions.NumberOfIterations > 0, nameof(LbfgsTrainerOptions.NumberOfIterations), "Must be positive"); + Host.CheckUserArg(LbfgsTrainerOptions.MaximumNumberOfIterations > 0, nameof(LbfgsTrainerOptions.MaximumNumberOfIterations), "Must be positive"); Host.CheckUserArg(LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance >= 0, nameof(LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance), "Must be non-negative"); Host.CheckUserArg(LbfgsTrainerOptions.NumberOfThreads == null || LbfgsTrainerOptions.NumberOfThreads.Value >= 0, nameof(LbfgsTrainerOptions.NumberOfThreads), "Must be non-negative"); @@ -234,7 +234,7 @@ internal LbfgsTrainerBase(IHostEnvironment env, L1Weight = LbfgsTrainerOptions.L1Regularization; OptTol = LbfgsTrainerOptions.OptmizationTolerance; MemorySize =LbfgsTrainerOptions.HistorySize; - MaxIterations = LbfgsTrainerOptions.NumberOfIterations; + MaxIterations = LbfgsTrainerOptions.MaximumNumberOfIterations; SgdInitializationTolerance = LbfgsTrainerOptions.StochasticGradientDescentInitilaizationTolerance; Quiet = LbfgsTrainerOptions.Quiet; InitWtsDiameter = LbfgsTrainerOptions.InitialWeightsDiameter; diff --git a/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs b/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs index 991c79d246..fd4da0336d 100644 --- a/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs +++ b/src/Microsoft.ML.StandardTrainers/Standard/SdcaBinary.cs @@ -198,7 +198,7 @@ public abstract class OptionsBase : TrainerInputBaseWithLabel /// /// Set to 1 to simulate online learning. Defaults to automatic. /// - [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", NullName = "", ShortName = "iter, MaxIterations")] + [Argument(ArgumentType.AtMostOnce, HelpText = "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", NullName = "", ShortName = "iter, MaxIterations, NumberOfIterations")] [TGUI(Label = "Max number of iterations", SuggestedSweeps = ",10,20,100")] [TlcModule.SweepableDiscreteParam("MaxIterations", new object[] { "", 10, 20, 100 })] public int? MaximumNumberOfIterations; diff --git a/test/BaselineOutput/Common/EntryPoints/core_manifest.json b/test/BaselineOutput/Common/EntryPoints/core_manifest.json index bb728063a0..5c8414eca2 100644 --- a/test/BaselineOutput/Common/EntryPoints/core_manifest.json +++ b/test/BaselineOutput/Common/EntryPoints/core_manifest.json @@ -11026,7 +11026,8 @@ "Type": "Int", "Desc": "Maximum number of iterations.", "Aliases": [ - "maxiter" + "maxiter", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -13559,12 +13560,13 @@ } }, { - "Name": "NumberOfIterations", + "Name": "MaximumNumberOfIterations", "Type": "Int", "Desc": "Maximum iterations.", "Aliases": [ "maxiter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -13879,12 +13881,13 @@ } }, { - "Name": "NumberOfIterations", + "Name": "MaximumNumberOfIterations", "Type": "Int", "Desc": "Maximum iterations.", "Aliases": [ "maxiter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -14907,12 +14910,13 @@ } }, { - "Name": "NumberOfIterations", + "Name": "MaximumNumberOfIterations", "Type": "Int", "Desc": "Maximum iterations.", "Aliases": [ "maxiter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -15233,7 +15237,8 @@ "Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", "Aliases": [ "iter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -15506,7 +15511,8 @@ "Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", "Aliases": [ "iter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, @@ -15779,7 +15785,8 @@ "Desc": "Maximum number of iterations; set to 1 to simulate online learning. Defaults to automatic.", "Aliases": [ "iter", - "MaxIterations" + "MaxIterations", + "NumberOfIterations" ], "Required": false, "SortOrder": 150.0, diff --git a/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs b/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs index 51dedb1fbd..51c700d74d 100644 --- a/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs +++ b/test/Microsoft.ML.Tests/PermutationFeatureImportanceTests.cs @@ -270,7 +270,7 @@ public void TestPfiMulticlassClassificationOnSparseFeatures() { var data = GetSparseDataset(TaskType.MulticlassClassification); var model = ML.MulticlassClassification.Trainers.LogisticRegression( - new MulticlassLogisticRegression.Options { NumberOfIterations = 1000 }).Fit(data); + new MulticlassLogisticRegression.Options { MaximumNumberOfIterations = 1000 }).Fit(data); var pfi = ML.MulticlassClassification.PermutationFeatureImportance(model, data); // Pfi Indices: