Skip to content

Commit 6babf1c

Browse files
author
Guy Bedford
committed
fixup
1 parent 5c46887 commit 6babf1c

File tree

37 files changed

+39
-40
lines changed

37 files changed

+39
-40
lines changed

documentation/docusaurus.config.js

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,13 @@
11
// @ts-check
22
// Note: type annotations allow type checking and IDEs autocompletion
33

4-
const {themes} = require('prism-react-renderer');
4+
import { themes } from 'prism-react-renderer';
5+
56
const lightCodeTheme = themes.github;
67
const darkCodeTheme = themes.dracula;
78

89
/** @type {import('@docusaurus/types').Config} */
9-
const config = {
10+
export default {
1011
webpack: {
1112
jsLoader: (isServer) => ({
1213
loader: require.resolve('swc-loader'),
@@ -104,5 +105,3 @@ const config = {
104105
},
105106
}),
106107
};
107-
108-
module.exports = config;

documentation/package.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,8 @@
1919
"@swc/core": "^1.6.13",
2020
"clsx": "^2.1.1",
2121
"prism-react-renderer": "^2.3.1",
22-
"react": "^18.3.1",
2322
"react-dom": "^18.3.1",
23+
"react": "^18.3.1",
2424
"swc-loader": "^0.2.6"
2525
}
2626
}

documentation/versioned_docs/version-1.13.0/fastly:backend/Backend/Backend.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ A new `Backend` object.
9292

9393
## Examples
9494

95-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
95+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
9696
<Fiddle config={{
9797
"type": "javascript",
9898
"title": "Implicit Dynamic Backend Example",

documentation/versioned_docs/version-1.13.0/fastly:experimental/allowDynamicBackends.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ allowDynamicBackends(enabled)
3131

3232
## Examples
3333

34-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
34+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
3535

3636
<Fiddle config={{
3737
"type": "javascript",

documentation/versioned_docs/version-1.13.0/globals/Math/asin.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.asin(x)
2121

2222
### Return value
2323

24-
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
24+
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
2525

2626
## Description
2727

documentation/versioned_docs/version-1.13.0/globals/Math/atan.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.atan(x)
2121

2222
### Return value
2323

24-
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is `Infinity`, it returns <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>. If `x` is `-Infinity`, it returns <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math>.
24+
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>.
2525

2626
## Description
2727

documentation/versioned_docs/version-1.13.0/globals/Math/atan2.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,6 +46,6 @@ The `Math.atan2()` method measures the counterclockwise angle θ, in radians, be
4646
| `-Infinity` | < 0 || 0 |
4747
| -0 | < 0 | -π / 2 | π / 2 |
4848

49-
In addition, for points in the second and third quadrants (`x < 0`), `Math.atan2()` would output an angle less than <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> or greater than <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>.
49+
In addition, for points in the second and third quadrants (`x < 0`), `Math.atan2()` would output an angle less than <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>.
5050

5151
Because `atan2()` is a static method of `Math`, you always use it as `Math.atan2()`, rather than as a method of a `Math` object you created (`Math` is not a constructor).

documentation/versioned_docs/version-1.13.0/globals/Math/expm1.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,6 @@ A number representing e<sup>x</sup> - 1, where e is [the base of the natural log
2727

2828
For very small values of _x_, adding 1 can reduce or eliminate precision. The double floats used in JS give you about 15 digits of precision. 1 + 1e-15 \= 1.000000000000001, but 1 + 1e-16 = 1.000000000000000 and therefore exactly 1.0 in that arithmetic, because digits past 15 are rounded off.
2929

30-
When you calculate <math display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup><annotation encoding="TeX">\mathrm{e}^x</annotation></semantics></math> where x is a number very close to 0, you should get an answer very close to 1 + x, because <math display="inline"><semantics><mrow><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup><mo>−</mo><mn>1</mn></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="TeX">\lim\_{x \to 0} \frac{\mathrm{e}^x - 1}{x} = 1</annotation></semantics></math>. If you calculate `Math.exp(1.1111111111e-15) - 1`, you should get an answer close to `1.1111111111e-15`. Instead, due to the highest significant figure in the result of `Math.exp` being the units digit `1`, the final value ends up being `1.1102230246251565e-15`, with only 3 correct digits. If, instead, you calculate `Math.exp1m(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111111000007e-15`, with 11 correct digits of precision.
30+
When you calculate <math display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup></semantics></math>. If you calculate `Math.exp(1.1111111111e-15) - 1`, you should get an answer close to `1.1111111111e-15`. Instead, due to the highest significant figure in the result of `Math.exp` being the units digit `1`, the final value ends up being `1.1102230246251565e-15`, with only 3 correct digits. If, instead, you calculate `Math.exp1m(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111111000007e-15`, with 11 correct digits of precision.
3131

3232
Because `expm1()` is a static method of `Math`, you always use it as `Math.expm1()`, rather than as a method of a `Math` object you created (`Math` is not a constructor).

documentation/versioned_docs/version-1.13.0/globals/Math/log1p.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ The natural logarithm (base [E](./E.mdx)) of `x + 1`. If `x` is -1, returns [`-I
2727

2828
For very small values of _x_, adding 1 can reduce or eliminate precision. The double floats used in JS give you about 15 digits of precision. 1 + 1e-15 \= 1.000000000000001, but 1 + 1e-16 = 1.000000000000000 and therefore exactly 1.0 in that arithmetic, because digits past 15 are rounded off.
2929

30-
When you calculate log(1 + _x_) where _x_ is a small positive number, you should get an answer very close to _x_, because <math display="inline"><semantics><mrow><munder><mo movablelimits="true" form="prefix">lim</mo><mrow ><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="TeX">\lim\_{x \to 0} \frac{\log(1+x)}{x} = 1</annotation></semantics></math>. If you calculate `Math.log(1 + 1.1111111111e-15)`, you should get an answer close to `1.1111111111e-15`. Instead, you will end up taking the logarithm of `1.00000000000000111022` (the roundoff is in binary, so sometimes it gets ugly), and get the answer 1.11022…e-15, with only 3 correct digits. If, instead, you calculate `Math.log1p(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111110999995e-15`, with 15 correct digits of precision (actually 16 in this case).
30+
When you calculate log(1 + _x_) where _x_ is a small positive number, you should get an answer very close to _x_, because <math display="inline"><semantics><mrow><munder><mo movablelimits="true" form="prefix">lim</mo><mrow ><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow></semantics></math>. If you calculate `Math.log(1 + 1.1111111111e-15)`, you should get an answer close to `1.1111111111e-15`. Instead, you will end up taking the logarithm of `1.00000000000000111022` (the roundoff is in binary, so sometimes it gets ugly), and get the answer 1.11022…e-15, with only 3 correct digits. If, instead, you calculate `Math.log1p(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111110999995e-15`, with 15 correct digits of precision (actually 16 in this case).
3131

3232
If the value of `x` is less than -1, the return value is always `NaN`.
3333

documentation/versioned_docs/version-2.5.0/fastly:backend/Backend/Backend.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ A new `Backend` object.
9292

9393
## Examples
9494

95-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
95+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
9696
<Fiddle config={{
9797
"type": "javascript",
9898
"title": "Implicit Dynamic Backend Example",

documentation/versioned_docs/version-2.5.0/fastly:experimental/allowDynamicBackends.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ allowDynamicBackends(enabled)
3131

3232
## Examples
3333

34-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
34+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
3535

3636
<Fiddle config={{
3737
"type": "javascript",

documentation/versioned_docs/version-2.5.0/globals/Math/asin.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.asin(x)
2121

2222
### Return value
2323

24-
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
24+
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
2525

2626
## Description
2727

documentation/versioned_docs/version-2.5.0/globals/Math/atan.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.atan(x)
2121

2222
### Return value
2323

24-
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is `Infinity`, it returns <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>. If `x` is `-Infinity`, it returns <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math>.
24+
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>.
2525

2626
## Description
2727

documentation/versioned_docs/version-2.5.0/globals/Math/atan2.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,6 +46,6 @@ The `Math.atan2()` method measures the counterclockwise angle θ, in radians, be
4646
| `-Infinity` | < 0 || 0 |
4747
| -0 | < 0 | -π / 2 | π / 2 |
4848

49-
In addition, for points in the second and third quadrants (`x < 0`), `Math.atan2()` would output an angle less than <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> or greater than <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>.
49+
In addition, for points in the second and third quadrants (`x < 0`), `Math.atan2()` would output an angle less than <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>.
5050

5151
Because `atan2()` is a static method of `Math`, you always use it as `Math.atan2()`, rather than as a method of a `Math` object you created (`Math` is not a constructor).

documentation/versioned_docs/version-2.5.0/globals/Math/expm1.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,6 @@ A number representing e<sup>x</sup> - 1, where e is [the base of the natural log
2727

2828
For very small values of _x_, adding 1 can reduce or eliminate precision. The double floats used in JS give you about 15 digits of precision. 1 + 1e-15 \= 1.000000000000001, but 1 + 1e-16 = 1.000000000000000 and therefore exactly 1.0 in that arithmetic, because digits past 15 are rounded off.
2929

30-
When you calculate <math display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup><annotation encoding="TeX">\mathrm{e}^x</annotation></semantics></math> where x is a number very close to 0, you should get an answer very close to 1 + x, because <math display="inline"><semantics><mrow><munder><mo lspace="0em" rspace="0em">lim</mo><mrow><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup><mo>−</mo><mn>1</mn></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="TeX">\lim\_{x \to 0} \frac{\mathrm{e}^x - 1}{x} = 1</annotation></semantics></math>. If you calculate `Math.exp(1.1111111111e-15) - 1`, you should get an answer close to `1.1111111111e-15`. Instead, due to the highest significant figure in the result of `Math.exp` being the units digit `1`, the final value ends up being `1.1102230246251565e-15`, with only 3 correct digits. If, instead, you calculate `Math.exp1m(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111111000007e-15`, with 11 correct digits of precision.
30+
When you calculate <math display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mi>x</mi></msup></semantics></math>. If you calculate `Math.exp(1.1111111111e-15) - 1`, you should get an answer close to `1.1111111111e-15`. Instead, due to the highest significant figure in the result of `Math.exp` being the units digit `1`, the final value ends up being `1.1102230246251565e-15`, with only 3 correct digits. If, instead, you calculate `Math.exp1m(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111111000007e-15`, with 11 correct digits of precision.
3131

3232
Because `expm1()` is a static method of `Math`, you always use it as `Math.expm1()`, rather than as a method of a `Math` object you created (`Math` is not a constructor).

documentation/versioned_docs/version-2.5.0/globals/Math/log1p.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ The natural logarithm (base [E](./E.mdx)) of `x + 1`. If `x` is -1, returns [`-I
2727

2828
For very small values of _x_, adding 1 can reduce or eliminate precision. The double floats used in JS give you about 15 digits of precision. 1 + 1e-15 \= 1.000000000000001, but 1 + 1e-16 = 1.000000000000000 and therefore exactly 1.0 in that arithmetic, because digits past 15 are rounded off.
2929

30-
When you calculate log(1 + _x_) where _x_ is a small positive number, you should get an answer very close to _x_, because <math display="inline"><semantics><mrow><munder><mo movablelimits="true" form="prefix">lim</mo><mrow ><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow><annotation encoding="TeX">\lim\_{x \to 0} \frac{\log(1+x)}{x} = 1</annotation></semantics></math>. If you calculate `Math.log(1 + 1.1111111111e-15)`, you should get an answer close to `1.1111111111e-15`. Instead, you will end up taking the logarithm of `1.00000000000000111022` (the roundoff is in binary, so sometimes it gets ugly), and get the answer 1.11022…e-15, with only 3 correct digits. If, instead, you calculate `Math.log1p(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111110999995e-15`, with 15 correct digits of precision (actually 16 in this case).
30+
When you calculate log(1 + _x_) where _x_ is a small positive number, you should get an answer very close to _x_, because <math display="inline"><semantics><mrow><munder><mo movablelimits="true" form="prefix">lim</mo><mrow ><mi>x</mi><mo stretchy="false">→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mi>log</mi><mo>⁡</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mi>x</mi></mfrac><mo>=</mo><mn>1</mn></mrow></semantics></math>. If you calculate `Math.log(1 + 1.1111111111e-15)`, you should get an answer close to `1.1111111111e-15`. Instead, you will end up taking the logarithm of `1.00000000000000111022` (the roundoff is in binary, so sometimes it gets ugly), and get the answer 1.11022…e-15, with only 3 correct digits. If, instead, you calculate `Math.log1p(1.1111111111e-15)`, you will get a much more accurate answer `1.1111111110999995e-15`, with 15 correct digits of precision (actually 16 in this case).
3131

3232
If the value of `x` is less than -1, the return value is always `NaN`.
3333

documentation/versioned_docs/version-3.18.1/fastly:backend/Backend/Backend.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ A new `Backend` object.
104104

105105
## Examples
106106

107-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
107+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
108108
<Fiddle config={{
109109
"type": "javascript",
110110
"title": "Implicit Dynamic Backend Example",

documentation/versioned_docs/version-3.18.1/fastly:experimental/allowDynamicBackends.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,7 @@ or
4747

4848
## Examples
4949

50-
In this example an implicit Dynamic Backend is created when making the fetch request to <https://www.fastly.com/> and the response is then returned to the client.
50+
In this example an implicit Dynamic Backend is created when making the fetch request to [https://www.fastly.com/](https://www.fastly.com/) and the response is then returned to the client.
5151

5252
<Fiddle config={{
5353
"type": "javascript",

documentation/versioned_docs/version-3.18.1/globals/Math/asin.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.asin(x)
2121

2222
### Return value
2323

24-
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
24+
The inverse sine (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>, inclusive) of `x`. If `x` is less than -1 or greater than 1, returns `NaN`.
2525

2626
## Description
2727

documentation/versioned_docs/version-3.18.1/globals/Math/atan.mdx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Math.atan(x)
2121

2222
### Return value
2323

24-
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math> and <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>, inclusive) of `x`. If `x` is `Infinity`, it returns <math><semantics><mfrac><mi>π</mi><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi}{2}</annotation></semantics></math>. If `x` is `-Infinity`, it returns <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><annotation encoding="TeX">-\frac{\pi}{2}</annotation></semantics></math>.
24+
The inverse tangent (angle in radians between <math><semantics><mrow><mo>-</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow></semantics></math>.
2525

2626
## Description
2727

0 commit comments

Comments
 (0)