Open
Description
Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.
You have the following three operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Constraints:
- 0 <= word1.length, word2.length <= 500
- word1 and word2 consist of lowercase English letters.
解法:
动态规划。自己想也想不出来,直接看题解吧,看图写代码。
代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m+1, vector<int>(n+1));
for (int i = 0; i < m+1; i++) {
dp[i][0] = i;
}
for (int i = 0; i < n+1; i++) {
dp[0][i] = i;
}
for (int i = 1; i < m+1; i++) {
for (int j = 1; j < n+1; j++) {
if (word1[i-1] != word2[j-1]) {
dp[i][j] = min(dp[i-1][j], min(dp[i-1][j-1], dp[i][j-1])) + 1;
} else {
dp[i][j] = dp[i-1][j-1];
}
}
}
return dp[m][n];
}
};
Refer:
72. Edit Distance
又做一遍:
- 对于两个字符串的动态规划,一般思路是:使用两个指针,分别从尾部向前扫描。
- 这道题的dp table如下图所示:
Refer:
编辑距离
Metadata
Metadata
Assignees
Labels
No labels