Skip to content

Commit 006167a

Browse files
mofosynecompilade
andauthored
gguf-dump.py: add --markdown dump output (#7853)
* gguf-dump.py: add --markdown dump output * gguf-dump.py: Add toc * gguf-dump.py: use standard tensor name lookup. Also add tensor ID field * gguf-dump.py: Add tensor overview count * gguf-dump.py: fix array preview * gguf-dump.py: markdownTableWithAlignmentSupport() added * Add type hints and spacing Co-authored-by: compilade <[email protected]> * gguf-dump.py: prettyfy dimention * gguf-dump: right align element count * gguf-dump.py: element count autosizing * Apply suggestions from code review Co-authored-by: compilade <[email protected]> --------- Co-authored-by: compilade <[email protected]>
1 parent df68d4f commit 006167a

File tree

1 file changed

+262
-2
lines changed

1 file changed

+262
-2
lines changed

gguf-py/scripts/gguf-dump.py

Lines changed: 262 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
1515
sys.path.insert(0, str(Path(__file__).parent.parent))
1616

17-
from gguf import GGUFReader, GGUFValueType # noqa: E402
17+
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
1818

1919
logger = logging.getLogger("gguf-dump")
2020

@@ -101,25 +101,285 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
101101
json.dump(result, sys.stdout)
102102

103103

104+
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
105+
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
106+
107+
# Alignment Utility Function
108+
def strAlign(padding: int, alignMode: str | None, strVal: str):
109+
if alignMode == 'center':
110+
return strVal.center(padding)
111+
elif alignMode == 'right':
112+
return strVal.rjust(padding - 1) + ' '
113+
elif alignMode == 'left':
114+
return ' ' + strVal.ljust(padding - 1)
115+
else: # default left
116+
return ' ' + strVal.ljust(padding - 1)
117+
118+
def dashAlign(padding: int, alignMode: str | None):
119+
if alignMode == 'center':
120+
return ':' + '-' * (padding - 2) + ':'
121+
elif alignMode == 'right':
122+
return '-' * (padding - 1) + ':'
123+
elif alignMode == 'left':
124+
return ':' + '-' * (padding - 1)
125+
else: # default left
126+
return '-' * (padding)
127+
128+
# Calculate Padding For Each Column Based On Header and Data Length
129+
rowsPadding = {}
130+
for index, columnEntry in enumerate(header_map):
131+
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
132+
headerPadCount = len(columnEntry['header_name']) + 2
133+
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
134+
135+
# Render Markdown Header
136+
rows = []
137+
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
138+
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
139+
140+
# Render Tabular Data
141+
for item in data:
142+
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
143+
144+
# Convert Tabular String Rows Into String
145+
tableString = ""
146+
for row in rows:
147+
tableString += f'|{row}|\n'
148+
149+
return tableString
150+
151+
152+
def element_count_rounded_notation(count: int) -> str:
153+
if count > 1e15 :
154+
# Quadrillion
155+
scaled_amount = count * 1e-15
156+
scale_suffix = "Q"
157+
elif count > 1e12 :
158+
# Trillions
159+
scaled_amount = count * 1e-12
160+
scale_suffix = "T"
161+
elif count > 1e9 :
162+
# Billions
163+
scaled_amount = count * 1e-9
164+
scale_suffix = "B"
165+
elif count > 1e6 :
166+
# Millions
167+
scaled_amount = count * 1e-6
168+
scale_suffix = "M"
169+
elif count > 1e3 :
170+
# Thousands
171+
scaled_amount = count * 1e-3
172+
scale_suffix = "K"
173+
else:
174+
# Under Thousands
175+
scaled_amount = count
176+
scale_suffix = ""
177+
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
178+
179+
180+
def translate_tensor_name(name):
181+
words = name.split(".")
182+
183+
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
184+
abbreviation_dictionary = {
185+
'token_embd': 'Token embedding',
186+
'pos_embd': 'Position embedding',
187+
'output_norm': 'Output normalization',
188+
'output': 'Output',
189+
'attn_norm': 'Attention normalization',
190+
'attn_norm_2': 'Attention normalization',
191+
'attn_qkv': 'Attention query-key-value',
192+
'attn_q': 'Attention query',
193+
'attn_k': 'Attention key',
194+
'attn_v': 'Attention value',
195+
'attn_output': 'Attention output',
196+
'ffn_norm': 'Feed-forward network normalization',
197+
'ffn_up': 'Feed-forward network "up"',
198+
'ffn_gate': 'Feed-forward network "gate"',
199+
'ffn_down': 'Feed-forward network "down"',
200+
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
201+
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
202+
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
203+
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
204+
'ssm_in': 'State space model input projections',
205+
'ssm_conv1d': 'State space model rolling/shift',
206+
'ssm_x': 'State space model selective parametrization',
207+
'ssm_a': 'State space model state compression',
208+
'ssm_d': 'State space model skip connection',
209+
'ssm_dt': 'State space model time step',
210+
'ssm_out': 'State space model output projection',
211+
'blk': 'Block'
212+
}
213+
214+
expanded_words = []
215+
for word in words:
216+
word_norm = word.strip().lower()
217+
if word_norm in abbreviation_dictionary:
218+
expanded_words.append(abbreviation_dictionary[word_norm].title())
219+
else:
220+
expanded_words.append(word.title())
221+
222+
return ' '.join(expanded_words)
223+
224+
225+
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
226+
host_endian, file_endian = get_file_host_endian(reader)
227+
markdown_content = ""
228+
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
229+
markdown_content += f'- Endian: {file_endian} endian\n'
230+
markdown_content += '\n'
231+
markdown_content += '## Key Value Metadata Store\n\n'
232+
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
233+
markdown_content += '\n'
234+
235+
kv_dump_table: list[dict[str, str | int]] = []
236+
for n, field in enumerate(reader.fields.values(), 1):
237+
if not field.types:
238+
pretty_type = 'N/A'
239+
elif field.types[0] == GGUFValueType.ARRAY:
240+
nest_count = len(field.types) - 1
241+
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
242+
else:
243+
pretty_type = str(field.types[-1].name)
244+
245+
total_elements = len(field.data)
246+
value = ""
247+
if len(field.types) == 1:
248+
curr_type = field.types[0]
249+
if curr_type == GGUFValueType.STRING:
250+
value = repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60])
251+
elif curr_type in reader.gguf_scalar_to_np:
252+
value = str(field.parts[-1][0])
253+
else:
254+
if field.types[0] == GGUFValueType.ARRAY:
255+
curr_type = field.types[1]
256+
if curr_type == GGUFValueType.STRING:
257+
render_element = min(5, total_elements)
258+
for element_pos in range(render_element):
259+
value += repr(str(bytes(field.parts[-1 - element_pos]), encoding='utf-8')[:5]) + (", " if total_elements > 1 else "")
260+
elif curr_type in reader.gguf_scalar_to_np:
261+
render_element = min(7, total_elements)
262+
for element_pos in range(render_element):
263+
value += str(field.parts[-1 - element_pos][0]) + (", " if total_elements > 1 else "")
264+
value = f'[ {value}{" ..." if total_elements > 1 else ""} ]'
265+
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
266+
267+
kv_dump_table_header_map = [
268+
{'key_name':'n', 'header_name':'POS', 'align':'right'},
269+
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
270+
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
271+
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
272+
{'key_name':'value', 'header_name':'Value', 'align':'left'},
273+
]
274+
275+
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
276+
277+
markdown_content += "\n"
278+
279+
if not args.no_tensors:
280+
# Group tensors by their prefix and maintain order
281+
tensor_prefix_order: list[str] = []
282+
tensor_name_to_key: dict[str, int] = {}
283+
tensor_groups: dict[str, list[ReaderTensor]] = {}
284+
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
285+
286+
# Parsing Tensors Record
287+
for key, tensor in enumerate(reader.tensors):
288+
tensor_components = tensor.name.split('.')
289+
290+
# Classify Tensor Group
291+
tensor_group_name = "base"
292+
if tensor_components[0] == 'blk':
293+
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
294+
295+
# Check if new Tensor Group
296+
if tensor_group_name not in tensor_groups:
297+
tensor_groups[tensor_group_name] = []
298+
tensor_prefix_order.append(tensor_group_name)
299+
300+
# Record Tensor and Tensor Position
301+
tensor_groups[tensor_group_name].append(tensor)
302+
tensor_name_to_key[tensor.name] = key
303+
304+
# Tensors Mapping Dump
305+
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
306+
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
307+
markdown_content += '\n'
308+
309+
for group in tensor_prefix_order:
310+
tensors = tensor_groups[group]
311+
group_elements = sum(tensor.n_elements for tensor in tensors)
312+
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
313+
314+
markdown_content += "\n"
315+
316+
for group in tensor_prefix_order:
317+
tensors = tensor_groups[group]
318+
group_elements = sum(tensor.n_elements for tensor in tensors)
319+
group_percentage = group_elements / total_elements * 100
320+
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
321+
322+
# Precalculate column sizing for visual consistency
323+
prettify_element_est_count_size: int = 1
324+
prettify_element_count_size: int = 1
325+
prettify_dimension_max_widths: dict[int, int] = {}
326+
for tensor in tensors:
327+
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
328+
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
329+
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
330+
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
331+
332+
# Generate Tensor Layer Table Content
333+
tensor_dump_table: list[dict[str, str | int]] = []
334+
for tensor in tensors:
335+
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
336+
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
337+
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
338+
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
339+
type_name_string = f"{tensor.tensor_type.name}"
340+
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
341+
342+
tensor_dump_table_header_map = [
343+
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
344+
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
345+
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
346+
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
347+
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
348+
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
349+
]
350+
351+
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
352+
353+
markdown_content += "\n"
354+
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
355+
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
356+
markdown_content += "\n\n"
357+
358+
print(markdown_content) # noqa: NP100
359+
360+
104361
def main() -> None:
105362
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
106363
parser.add_argument("model", type=str, help="GGUF format model filename")
107364
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
108365
parser.add_argument("--json", action="store_true", help="Produce JSON output")
109366
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
367+
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
110368
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
111369

112370
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
113371

114372
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
115373

116-
if not args.json:
374+
if not args.json and not args.markdown:
117375
logger.info(f'* Loading: {args.model}')
118376

119377
reader = GGUFReader(args.model, 'r')
120378

121379
if args.json:
122380
dump_metadata_json(reader, args)
381+
elif args.markdown:
382+
dump_markdown_metadata(reader, args)
123383
else:
124384
dump_metadata(reader, args)
125385

0 commit comments

Comments
 (0)