Skip to content

Commit 4ef5e79

Browse files
committed
llama : replace gguf_file_saver with new gguf write API
1 parent 35177d7 commit 4ef5e79

File tree

4 files changed

+47
-173
lines changed

4 files changed

+47
-173
lines changed

examples/gguf/gguf.cpp

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -193,8 +193,7 @@ bool gguf_ex_read_1(const std::string & fname) {
193193

194194
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
195195

196-
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n",
197-
__func__, i, cur->n_dims, cur->name, cur->data);
196+
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
198197

199198
// check data
200199
{

ggml.c

Lines changed: 20 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -16903,7 +16903,7 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
1690316903
// compute size of intermediate results
1690416904
// TODO: does not take into account scratch buffers !!!!
1690516905
for (int i = 0; i < cgraph->n_nodes; ++i) {
16906-
size_eval += ggml_nbytes(cgraph->nodes[i]);
16906+
size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
1690716907
}
1690816908

1690916909
// print
@@ -18629,8 +18629,9 @@ struct gguf_tensor_info {
1862918629

1863018630
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
1863118631

18632-
// for writing
18633-
const struct ggml_tensor * tensor;
18632+
// for writing API
18633+
const void * data;
18634+
size_t size;
1863418635
};
1863518636

1863618637
struct gguf_context {
@@ -19268,7 +19269,12 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
1926819269
}
1926919270
}
1927019271

19271-
void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor) {
19272+
void gguf_add_tensor_ex(
19273+
struct gguf_context * ctx,
19274+
const struct ggml_tensor * tensor,
19275+
enum ggml_type type,
19276+
const void * data,
19277+
size_t size) {
1927219278
const int idx = ctx->header.n_tensors;
1927319279
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
1927419280

@@ -19284,17 +19290,22 @@ void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tenso
1928419290
ctx->infos[idx].ne[i] = tensor->ne[i];
1928519291
}
1928619292

19287-
ctx->infos[idx].type = tensor->type;
19293+
ctx->infos[idx].type = type;
1928819294
ctx->infos[idx].offset = 0;
19289-
ctx->infos[idx].tensor = tensor;
19295+
ctx->infos[idx].data = data;
19296+
ctx->infos[idx].size = size;
1929019297

1929119298
if (ctx->header.n_tensors > 0) {
19292-
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ggml_nbytes(ctx->infos[idx - 1].tensor), ctx->alignment);
19299+
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
1929319300
}
1929419301

1929519302
ctx->header.n_tensors++;
1929619303
}
1929719304

19305+
void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor) {
19306+
gguf_add_tensor_ex(ctx, tensor, tensor->type, tensor->data, ggml_nbytes(tensor));
19307+
}
19308+
1929819309
static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
1929919310
fwrite(&val->n, sizeof(val->n), 1, file);
1930019311
fwrite(val->data, sizeof(char), val->n, file);
@@ -19396,10 +19407,10 @@ void gguf_write_to_file(struct gguf_context * ctx, const char * fname) {
1939619407
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
1939719408
struct gguf_tensor_info * info = &ctx->infos[i];
1939819409

19399-
const size_t size = ggml_nbytes(info->tensor);
19410+
const size_t size = info->size;
1940019411
const size_t size_pad = GGML_PAD(size, ctx->alignment);
1940119412

19402-
gguf_fwrite_el(file, info->tensor->data, size);
19413+
gguf_fwrite_el(file, info->data, size);
1940319414

1940419415
if (size_pad != size) {
1940519416
uint8_t pad = 0;

ggml.h

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1791,6 +1791,14 @@ extern "C" {
17911791

17921792
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
17931793

1794+
// same as gguf_add_tensor, but allows to override tensor data
1795+
GGML_API void gguf_add_tensor_ex(
1796+
struct gguf_context * ctx,
1797+
const struct ggml_tensor * tensor,
1798+
enum ggml_type type,
1799+
const void * data,
1800+
size_t size);
1801+
17941802
GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname);
17951803

17961804
//

gguf-llama.cpp

Lines changed: 18 additions & 162 deletions
Original file line numberDiff line numberDiff line change
@@ -695,172 +695,14 @@ struct gguf_file_loader {
695695

696696
tensor.name = name;
697697
tensor.size = ggml_nbytes(cur);
698+
tensor.ggml_tensor = cur;
698699

699700
tensors_map.tensors.push_back(tensor);
700701
tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
701702
}
702703
}
703704
};
704705

705-
struct gguf_file_saver {
706-
// TODO
707-
// this implementation now assumes that the data section is of the same length as the unquantized model.
708-
// this is needed to write tensor metadata and weights in a single pass by seeking to appropriate positions in the file.
709-
// this may not be true when we add quantization version and change ftype description (currently it's string according to the specs,
710-
// but better to have it as uint32).
711-
// we need to calculate the delta in number of bytes written with a counter as a struct member.
712-
713-
gguf_context * ctx; // loaded gguf context (used to re-write the KV section (good enough for now))
714-
715-
gguf_file file;
716-
size_t info_offset;
717-
size_t tensor_offset;
718-
719-
gguf_file_saver(const char * fname, gguf_context * ctx) : ctx(ctx), file(fname, "wb") {
720-
LLAMA_LOG_INFO("%s: saving model to %s\n", __func__, fname);
721-
722-
write_header();
723-
write_kv();
724-
}
725-
726-
void write_header() {
727-
file.write_i32(GGUF_MAGIC);
728-
file.write_i32(GGUF_VERSION);
729-
file.write_i32(gguf_get_n_tensors(ctx));
730-
file.write_i32(gguf_get_n_kv (ctx));
731-
}
732-
733-
void write_kv_arr_i32(const std::string & key, enum gguf_type type, int i, int n_arr) {
734-
std::vector<int32_t> data(n_arr);
735-
736-
for (int j = 0; j < n_arr; ++j) {
737-
int32_t val = gguf_get_arr_i32(ctx, i, j);
738-
data[j] = val;
739-
}
740-
741-
file.write_arr<int32_t>(key, type, data);
742-
}
743-
744-
void write_kv_arr_f32(const std::string & key, enum gguf_type type, int i, int n_arr) {
745-
std::vector<float> data(n_arr);
746-
747-
for (int j = 0; j < n_arr; ++j) {
748-
float val = gguf_get_arr_f32(ctx, i, j);
749-
data[j] = val;
750-
}
751-
752-
file.write_arr<float>(key, type, data);
753-
}
754-
755-
void write_kv_arr_str(const std::string & key, enum gguf_type type, int i, int n_arr) {
756-
std::vector<std::string> data(n_arr);
757-
758-
for (int j = 0; j < n_arr; ++j) {
759-
std::string val = gguf_get_arr_str(ctx, i, j);
760-
data[j] = val;
761-
}
762-
763-
file.write_arr(key, type, data);
764-
}
765-
766-
// re-write the key-value section from the loaded file
767-
void write_kv() {
768-
const int32_t n_kv = gguf_get_n_kv(ctx);
769-
for (int i = 0; i < n_kv; ++i) {
770-
const char * key = gguf_get_key(ctx, i);
771-
LLAMA_LOG_INFO("%s: writing key '%s'\n", __func__, key);
772-
773-
if (strcmp(key, "general.quantization_version") == 0) {
774-
file.write_val<uint32_t>("general.quantization_version", GGUF_TYPE_UINT32, GGML_QNT_VERSION);
775-
} else {
776-
const gguf_type vtype = gguf_get_kv_type(ctx, i);
777-
778-
switch (vtype) {
779-
case GGUF_TYPE_BOOL: file.write_val<bool> (key, GGUF_TYPE_BOOL, gguf_get_val_bool(ctx, i)); break;
780-
case GGUF_TYPE_FLOAT32: file.write_val<float> (key, GGUF_TYPE_FLOAT32, gguf_get_val_f32 (ctx, i)); break;
781-
case GGUF_TYPE_INT16: file.write_val<int16_t> (key, GGUF_TYPE_INT16, gguf_get_val_i16 (ctx, i)); break;
782-
case GGUF_TYPE_INT32: file.write_val<int32_t> (key, GGUF_TYPE_INT32, gguf_get_val_i32 (ctx, i)); break;
783-
case GGUF_TYPE_INT8: file.write_val<int8_t> (key, GGUF_TYPE_INT8, gguf_get_val_i8 (ctx, i)); break;
784-
case GGUF_TYPE_STRING: file.write_str (key, GGUF_TYPE_STRING, gguf_get_val_str (ctx, i)); break;
785-
case GGUF_TYPE_UINT16: file.write_val<uint16_t>(key, GGUF_TYPE_UINT16, gguf_get_val_u16 (ctx, i)); break;
786-
case GGUF_TYPE_UINT32: file.write_val<uint32_t>(key, GGUF_TYPE_UINT32, gguf_get_val_u32 (ctx, i)); break;
787-
case GGUF_TYPE_UINT8: file.write_val<uint8_t> (key, GGUF_TYPE_UINT8, gguf_get_val_u8 (ctx, i)); break;
788-
case GGUF_TYPE_ARRAY:
789-
{
790-
const gguf_type arr_type = gguf_get_arr_type(ctx, i);
791-
const int n_arr = gguf_get_arr_n (ctx, i);
792-
793-
switch (arr_type) {
794-
case GGUF_TYPE_FLOAT32: write_kv_arr_f32(key, arr_type, i, n_arr); break;
795-
case GGUF_TYPE_INT32: write_kv_arr_i32(key, arr_type, i, n_arr); break;
796-
case GGUF_TYPE_STRING: write_kv_arr_str(key, arr_type, i, n_arr); break;
797-
default:
798-
throw std::runtime_error(format("cannot recognize array type for key %s\n", key));
799-
}
800-
} break;
801-
default:
802-
throw std::runtime_error(format("cannot recognize value type for key %s\n", key));
803-
}
804-
}
805-
}
806-
807-
info_offset = file.tell();
808-
809-
GGML_ASSERT(gguf_get_data_offset(ctx) >= info_offset);
810-
811-
const size_t count = gguf_get_data_offset(ctx) - info_offset;
812-
813-
file.write_zeros(count);
814-
file.seek(info_offset, SEEK_SET);
815-
}
816-
817-
size_t write_tensor_info(gguf_load_tensor & tensor, enum ggml_type type) {
818-
size_t total_written = 0;
819-
file.seek(info_offset, SEEK_SET);
820-
total_written += file.write_str(tensor.name);
821-
822-
int32_t n_dims = tensor.ne.size();
823-
total_written += file.write_i32(n_dims);
824-
for (int32_t i = 0; i < n_dims; ++i) {
825-
total_written += file.write_i32(tensor.ne[i]);
826-
}
827-
828-
total_written += file.write_i32(type);
829-
total_written += file.write_u64(tensor_offset);
830-
info_offset += total_written; // position to write info of the next tensor
831-
832-
file.seek(0, SEEK_END);
833-
834-
return total_written;
835-
}
836-
837-
void write_tensor(gguf_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
838-
switch (new_type) {
839-
case GGML_TYPE_F32:
840-
case GGML_TYPE_F16:
841-
case GGML_TYPE_Q4_0:
842-
case GGML_TYPE_Q4_1:
843-
case GGML_TYPE_Q5_0:
844-
case GGML_TYPE_Q5_1:
845-
case GGML_TYPE_Q8_0:
846-
case GGML_TYPE_Q2_K:
847-
case GGML_TYPE_Q3_K:
848-
case GGML_TYPE_Q4_K:
849-
case GGML_TYPE_Q5_K:
850-
case GGML_TYPE_Q6_K:
851-
break;
852-
default: GGML_ASSERT(false);
853-
}
854-
855-
write_tensor_info(tensor, new_type);
856-
file.write_raw(new_data, new_size);
857-
size_t padded_size = GGML_PAD(new_size, GGUF_DEFAULT_ALIGNMENT); // TODO: handle custom alignment
858-
size_t pad = padded_size - new_size;
859-
file.write_zeros(pad);
860-
tensor_offset += padded_size; // offset of the next tensor
861-
}
862-
};
863-
864706
struct llama_model_loader {
865707
std::unique_ptr<gguf_file_loader> file_loader;
866708
gguf_load_tensors_map tensors_map;
@@ -897,7 +739,6 @@ struct llama_model_loader {
897739
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
898740
}
899741
ggml_set_name(tensor, lt.name.c_str());
900-
GGML_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
901742

902743
if (backend != GGML_BACKEND_CPU) {
903744
ggml_set_no_alloc(ggml_ctx, use_mmap);
@@ -3245,7 +3086,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
32453086
}
32463087

32473088
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
3248-
gguf_file_saver file_saver(fname_out.c_str(), model_loader->file_loader->gguf_ctx);
3089+
3090+
struct gguf_context * ctx_out = gguf_init_empty();
3091+
3092+
// copy the KV pairs from the input file
3093+
gguf_set_kv(ctx_out, model_loader->file_loader->gguf_ctx);
3094+
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
32493095

32503096
#ifdef GGML_USE_K_QUANTS
32513097
int n_attention_wv = 0;
@@ -3279,6 +3125,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
32793125
std::vector<uint8_t> read_data;
32803126
std::vector<uint8_t> work;
32813127

3128+
std::vector<std::vector<uint8_t>> work_map(model_loader->tensors_map.tensors.size());
3129+
32823130
for (gguf_load_tensor & tensor : model_loader->tensors_map.tensors) {
32833131
read_data.resize(tensor.size);
32843132
tensor.data = read_data.data();
@@ -3437,12 +3285,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
34373285
}
34383286
total_size_org += tensor.size;
34393287
total_size_new += new_size;
3440-
file_saver.write_tensor(tensor, new_type, new_data, new_size);
3288+
3289+
// TODO: temp fix until we have stream support in gguf
3290+
work_map[idx - 1] = std::vector<uint8_t>((char *) new_data, (char *) new_data + new_size);
3291+
3292+
gguf_add_tensor_ex(ctx_out, tensor.ggml_tensor, new_type, work_map[idx - 1].data(), new_size);
34413293
}
34423294

3295+
gguf_write_to_file(ctx_out, fname_out.c_str());
3296+
gguf_free(ctx_out);
3297+
34433298
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
34443299
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
34453300

3301+
// print histogram for all tensors
34463302
{
34473303
int64_t sum_all = 0;
34483304
for (size_t i = 0; i < hist_all.size(); i++) {

0 commit comments

Comments
 (0)