diff --git a/examples/common.cpp b/examples/common.cpp
index 4d3ba9bb23ab4..9f8aab9a25681 100644
--- a/examples/common.cpp
+++ b/examples/common.cpp
@@ -543,7 +543,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
     fprintf(stdout, "  --in-suffix STRING    string to suffix after user inputs with (default: empty)\n");
     fprintf(stdout, "  -f FNAME, --file FNAME\n");
     fprintf(stdout, "                        prompt file to start generation.\n");
-    fprintf(stdout, "  -n N, --n-predict N   number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
+    fprintf(stdout, "  -n N, --n-predict N   number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
     fprintf(stdout, "  -c N, --ctx-size N    size of the prompt context (default: %d)\n", params.n_ctx);
     fprintf(stdout, "  -b N, --batch-size N  batch size for prompt processing (default: %d)\n", params.n_batch);
     fprintf(stdout, "  -gqa N, --gqa N       grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
diff --git a/examples/main/README.md b/examples/main/README.md
index 55c16096f03b7..60e3907d52f5b 100644
--- a/examples/main/README.md
+++ b/examples/main/README.md
@@ -160,9 +160,13 @@ The following options allow you to control the text generation process and fine-
 
 ### Number of Tokens to Predict
 
--   `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).
+-   `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
 
-The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
+The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
+
+A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
+
+If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
 
 It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
 
diff --git a/examples/main/main.cpp b/examples/main/main.cpp
index 56ada7e69d99d..a632bea1cf2b9 100644
--- a/examples/main/main.cpp
+++ b/examples/main/main.cpp
@@ -431,8 +431,12 @@ int main(int argc, char ** argv) {
             // - take the n_keep first tokens from the original prompt (via n_past)
             // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
             if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
-                const int n_left = n_past - params.n_keep;
+                if (params.n_predict == -2) {
+                    fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
+                    break;
+                }
 
+                const int n_left = n_past - params.n_keep;
                 // always keep the first token - BOS
                 n_past = std::max(1, params.n_keep);
                 n_past_guidance = std::max(1, params.n_keep + guidance_offset);