diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp index 7da52109f..44cc30145 100644 --- a/include/godot_cpp/core/math.hpp +++ b/include/godot_cpp/core/math.hpp @@ -537,6 +537,26 @@ inline float bezier_interpolate(float p_start, float p_control_1, float p_contro return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3; } +inline double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + double omt = (1.0 - p_t); + double omt2 = omt * omt; + double t2 = p_t * p_t; + + double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2; + return d; +} + +inline float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + float omt = (1.0f - p_t); + float omt2 = omt * omt; + float t2 = p_t * p_t; + + float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2; + return d; +} + template inline T clamp(T x, T minv, T maxv) { if (x < minv) { diff --git a/include/godot_cpp/variant/aabb.hpp b/include/godot_cpp/variant/aabb.hpp index 17048d60a..cac221964 100644 --- a/include/godot_cpp/variant/aabb.hpp +++ b/include/godot_cpp/variant/aabb.hpp @@ -72,16 +72,21 @@ struct [[nodiscard]] AABB { AABB merge(const AABB &p_with) const; void merge_with(const AABB &p_aabb); ///merge with another AABB AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs - bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; - bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = nullptr, Vector3 *r_normal = nullptr) const; - _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const; + _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t p_t0, real_t p_t1) const; + + bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_intersection_point = nullptr, Vector3 *r_normal = nullptr) const; + bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir) const { + bool inside; + return find_intersects_ray(p_from, p_dir, inside); + } + bool find_intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, bool &r_inside, Vector3 *r_intersection_point = nullptr, Vector3 *r_normal = nullptr) const; _FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const; _FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const; bool intersects_plane(const Plane &p_plane) const; _FORCE_INLINE_ bool has_point(const Vector3 &p_point) const; - _FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const; + _FORCE_INLINE_ Vector3 get_support(const Vector3 &p_direction) const; Vector3 get_longest_axis() const; int get_longest_axis_index() const; @@ -208,15 +213,18 @@ inline bool AABB::encloses(const AABB &p_aabb) const { (src_max.z >= dst_max.z)); } -Vector3 AABB::get_support(const Vector3 &p_normal) const { - Vector3 half_extents = size * 0.5f; - Vector3 ofs = position + half_extents; - - return Vector3( - (p_normal.x > 0) ? half_extents.x : -half_extents.x, - (p_normal.y > 0) ? half_extents.y : -half_extents.y, - (p_normal.z > 0) ? half_extents.z : -half_extents.z) + - ofs; +Vector3 AABB::get_support(const Vector3 &p_direction) const { + Vector3 support = position; + if (p_direction.x > 0.0f) { + support.x += size.x; + } + if (p_direction.y > 0.0f) { + support.y += size.y; + } + if (p_direction.z > 0.0f) { + support.z += size.z; + } + return support; } Vector3 AABB::get_endpoint(int p_point) const { @@ -402,7 +410,7 @@ inline real_t AABB::get_shortest_axis_size() const { return max_size; } -bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const { +bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t p_t0, real_t p_t1) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); @@ -453,7 +461,7 @@ bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real if (tzmax < tmax) { tmax = tzmax; } - return ((tmin < t1) && (tmax > t0)); + return ((tmin < p_t1) && (tmax > p_t0)); } void AABB::grow_by(real_t p_amount) { diff --git a/include/godot_cpp/variant/basis.hpp b/include/godot_cpp/variant/basis.hpp index 6ede9ead9..efe21cf6d 100644 --- a/include/godot_cpp/variant/basis.hpp +++ b/include/godot_cpp/variant/basis.hpp @@ -43,11 +43,11 @@ struct [[nodiscard]] Basis { Vector3(0, 0, 1) }; - _FORCE_INLINE_ const Vector3 &operator[](int axis) const { - return rows[axis]; + _FORCE_INLINE_ const Vector3 &operator[](int p_row) const { + return rows[p_row]; } - _FORCE_INLINE_ Vector3 &operator[](int axis) { - return rows[axis]; + _FORCE_INLINE_ Vector3 &operator[](int p_row) { + return rows[p_row]; } void invert(); @@ -58,21 +58,19 @@ struct [[nodiscard]] Basis { _FORCE_INLINE_ real_t determinant() const; - void from_z(const Vector3 &p_z); - void rotate(const Vector3 &p_axis, real_t p_angle); Basis rotated(const Vector3 &p_axis, real_t p_angle) const; void rotate_local(const Vector3 &p_axis, real_t p_angle); Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const; - void rotate(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); - Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) const; + void rotate(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ); + Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) const; void rotate(const Quaternion &p_quaternion); Basis rotated(const Quaternion &p_quaternion) const; - Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const; + Vector3 get_euler_normalized(EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) const; void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; Quaternion get_rotation_quaternion() const; @@ -81,9 +79,9 @@ struct [[nodiscard]] Basis { Vector3 rotref_posscale_decomposition(Basis &rotref) const; - Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const; - void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); - static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) { + Vector3 get_euler(EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) const; + void set_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ); + static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) { Basis b; b.set_euler(p_euler, p_order); return b; @@ -103,27 +101,25 @@ struct [[nodiscard]] Basis { void scale_orthogonal(const Vector3 &p_scale); Basis scaled_orthogonal(const Vector3 &p_scale) const; - - void make_scale_uniform(); - float get_uniform_scale() const; + real_t get_uniform_scale() const; Vector3 get_scale() const; Vector3 get_scale_abs() const; - Vector3 get_scale_local() const; + Vector3 get_scale_global() const; void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale); - void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EULER_ORDER_YXZ); + void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ); void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale); // transposed dot products - _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const { - return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2]; + _FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const { + return rows[0][0] * p_v[0] + rows[1][0] * p_v[1] + rows[2][0] * p_v[2]; } - _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const { - return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2]; + _FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const { + return rows[0][1] * p_v[0] + rows[1][1] * p_v[1] + rows[2][1] * p_v[2]; } - _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const { - return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2]; + _FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const { + return rows[0][2] * p_v[0] + rows[1][2] * p_v[1] + rows[2][2] * p_v[2]; } bool is_equal_approx(const Basis &p_basis) const; @@ -140,31 +136,35 @@ struct [[nodiscard]] Basis { _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const; _FORCE_INLINE_ void operator-=(const Basis &p_matrix); _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const; - _FORCE_INLINE_ void operator*=(const real_t p_val); - _FORCE_INLINE_ Basis operator*(const real_t p_val) const; + _FORCE_INLINE_ void operator*=(real_t p_val); + _FORCE_INLINE_ Basis operator*(real_t p_val) const; + _FORCE_INLINE_ void operator/=(real_t p_val); + _FORCE_INLINE_ Basis operator/(real_t p_val) const; bool is_orthogonal() const; + bool is_orthonormal() const; + bool is_conformal() const; bool is_diagonal() const; bool is_rotation() const; - Basis lerp(const Basis &p_to, const real_t &p_weight) const; - Basis slerp(const Basis &p_to, const real_t &p_weight) const; + Basis lerp(const Basis &p_to, real_t p_weight) const; + Basis slerp(const Basis &p_to, real_t p_weight) const; void rotate_sh(real_t *p_values); operator String() const; /* create / set */ - _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { - rows[0][0] = xx; - rows[0][1] = xy; - rows[0][2] = xz; - rows[1][0] = yx; - rows[1][1] = yy; - rows[1][2] = yz; - rows[2][0] = zx; - rows[2][1] = zy; - rows[2][2] = zz; + _FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) { + rows[0][0] = p_xx; + rows[0][1] = p_xy; + rows[0][2] = p_xz; + rows[1][0] = p_yx; + rows[1][1] = p_yy; + rows[1][2] = p_yz; + rows[2][0] = p_zx; + rows[2][1] = p_zy; + rows[2][2] = p_zz; } _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { set_column(0, p_x); @@ -194,20 +194,20 @@ struct [[nodiscard]] Basis { rows[2].zero(); } - _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const { + _FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const { return Basis( - rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x, - rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y, - rows[0].x * m[0].z + rows[1].x * m[1].z + rows[2].x * m[2].z, - rows[0].y * m[0].x + rows[1].y * m[1].x + rows[2].y * m[2].x, - rows[0].y * m[0].y + rows[1].y * m[1].y + rows[2].y * m[2].y, - rows[0].y * m[0].z + rows[1].y * m[1].z + rows[2].y * m[2].z, - rows[0].z * m[0].x + rows[1].z * m[1].x + rows[2].z * m[2].x, - rows[0].z * m[0].y + rows[1].z * m[1].y + rows[2].z * m[2].y, - rows[0].z * m[0].z + rows[1].z * m[1].z + rows[2].z * m[2].z); + rows[0].x * p_m[0].x + rows[1].x * p_m[1].x + rows[2].x * p_m[2].x, + rows[0].x * p_m[0].y + rows[1].x * p_m[1].y + rows[2].x * p_m[2].y, + rows[0].x * p_m[0].z + rows[1].x * p_m[1].z + rows[2].x * p_m[2].z, + rows[0].y * p_m[0].x + rows[1].y * p_m[1].x + rows[2].y * p_m[2].x, + rows[0].y * p_m[0].y + rows[1].y * p_m[1].y + rows[2].y * p_m[2].y, + rows[0].y * p_m[0].z + rows[1].y * p_m[1].z + rows[2].y * p_m[2].z, + rows[0].z * p_m[0].x + rows[1].z * p_m[1].x + rows[2].z * p_m[2].x, + rows[0].z * p_m[0].y + rows[1].z * p_m[1].y + rows[2].z * p_m[2].y, + rows[0].z * p_m[0].z + rows[1].z * p_m[1].z + rows[2].z * p_m[2].z); } - Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { - set(xx, xy, xz, yx, yy, yz, zx, zy, zz); + Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) { + set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz); } void orthonormalize(); @@ -281,18 +281,30 @@ _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const { return ret; } -_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) { +_FORCE_INLINE_ void Basis::operator*=(real_t p_val) { rows[0] *= p_val; rows[1] *= p_val; rows[2] *= p_val; } -_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const { +_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const { Basis ret(*this); ret *= p_val; return ret; } +_FORCE_INLINE_ void Basis::operator/=(real_t p_val) { + rows[0] /= p_val; + rows[1] /= p_val; + rows[2] /= p_val; +} + +_FORCE_INLINE_ Basis Basis::operator/(real_t p_val) const { + Basis ret(*this); + ret /= p_val; + return ret; +} + Vector3 Basis::xform(const Vector3 &p_vector) const { return Vector3( rows[0].dot(p_vector), diff --git a/include/godot_cpp/variant/char_range.inc.hpp b/include/godot_cpp/variant/char_range.inc.hpp new file mode 100644 index 000000000..f31e761f0 --- /dev/null +++ b/include/godot_cpp/variant/char_range.inc.hpp @@ -0,0 +1,3631 @@ +/**************************************************************************/ +/* char_range.inc.hpp */ +/**************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/**************************************************************************/ +/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ +/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/**************************************************************************/ + +#pragma once + +// Unicode Derived Core Properties +// Source: https://www.unicode.org/Public/16.0.0/ucd/DerivedCoreProperties.txt + +namespace godot { + +struct CharRange { + char32_t start; + char32_t end; +}; + +constexpr inline CharRange xid_start[] = { + { 0x41, 0x5a }, + { 0x5f, 0x5f }, // Underscore technically isn't in XID_Start, but for our purposes it's included. + { 0x61, 0x7a }, + { 0xaa, 0xaa }, + { 0xb5, 0xb5 }, + { 0xba, 0xba }, + { 0xc0, 0xd6 }, + { 0xd8, 0xf6 }, + { 0xf8, 0x2c1 }, + { 0x2c6, 0x2d1 }, + { 0x2e0, 0x2e4 }, + { 0x2ec, 0x2ec }, + { 0x2ee, 0x2ee }, + { 0x370, 0x374 }, + { 0x376, 0x377 }, + { 0x37b, 0x37d }, + { 0x37f, 0x37f }, + { 0x386, 0x386 }, + { 0x388, 0x38a }, + { 0x38c, 0x38c }, + { 0x38e, 0x3a1 }, + { 0x3a3, 0x3f5 }, + { 0x3f7, 0x481 }, + { 0x48a, 0x52f }, + { 0x531, 0x556 }, + { 0x559, 0x559 }, + { 0x560, 0x588 }, + { 0x5d0, 0x5ea }, + { 0x5ef, 0x5f2 }, + { 0x620, 0x64a }, + { 0x66e, 0x66f }, + { 0x671, 0x6d3 }, + { 0x6d5, 0x6d5 }, + { 0x6e5, 0x6e6 }, + { 0x6ee, 0x6ef }, + { 0x6fa, 0x6fc }, + { 0x6ff, 0x6ff }, + { 0x710, 0x710 }, + { 0x712, 0x72f }, + { 0x74d, 0x7a5 }, + { 0x7b1, 0x7b1 }, + { 0x7ca, 0x7ea }, + { 0x7f4, 0x7f5 }, + { 0x7fa, 0x7fa }, + { 0x800, 0x815 }, + { 0x81a, 0x81a }, + { 0x824, 0x824 }, + { 0x828, 0x828 }, + { 0x840, 0x858 }, + { 0x860, 0x86a }, + { 0x870, 0x887 }, + { 0x889, 0x88e }, + { 0x8a0, 0x8c9 }, + { 0x904, 0x939 }, + { 0x93d, 0x93d }, + { 0x950, 0x950 }, + { 0x958, 0x961 }, + { 0x971, 0x980 }, + { 0x985, 0x98c }, + { 0x98f, 0x990 }, + { 0x993, 0x9a8 }, + { 0x9aa, 0x9b0 }, + { 0x9b2, 0x9b2 }, + { 0x9b6, 0x9b9 }, + { 0x9bd, 0x9bd }, + { 0x9ce, 0x9ce }, + { 0x9dc, 0x9dd }, + { 0x9df, 0x9e1 }, + { 0x9f0, 0x9f1 }, + { 0x9fc, 0x9fc }, + { 0xa05, 0xa0a }, + { 0xa0f, 0xa10 }, + { 0xa13, 0xa28 }, + { 0xa2a, 0xa30 }, + { 0xa32, 0xa33 }, + { 0xa35, 0xa36 }, + { 0xa38, 0xa39 }, + { 0xa59, 0xa5c }, + { 0xa5e, 0xa5e }, + { 0xa72, 0xa74 }, + { 0xa85, 0xa8d }, + { 0xa8f, 0xa91 }, + { 0xa93, 0xaa8 }, + { 0xaaa, 0xab0 }, + { 0xab2, 0xab3 }, + { 0xab5, 0xab9 }, + { 0xabd, 0xabd }, + { 0xad0, 0xad0 }, + { 0xae0, 0xae1 }, + { 0xaf9, 0xaf9 }, + { 0xb05, 0xb0c }, + { 0xb0f, 0xb10 }, + { 0xb13, 0xb28 }, + { 0xb2a, 0xb30 }, + { 0xb32, 0xb33 }, + { 0xb35, 0xb39 }, + { 0xb3d, 0xb3d }, + { 0xb5c, 0xb5d }, + { 0xb5f, 0xb61 }, + { 0xb71, 0xb71 }, + { 0xb83, 0xb83 }, + { 0xb85, 0xb8a }, + { 0xb8e, 0xb90 }, + { 0xb92, 0xb95 }, + { 0xb99, 0xb9a }, + { 0xb9c, 0xb9c }, + { 0xb9e, 0xb9f }, + { 0xba3, 0xba4 }, + { 0xba8, 0xbaa }, + { 0xbae, 0xbb9 }, + { 0xbd0, 0xbd0 }, + { 0xc05, 0xc0c }, + { 0xc0e, 0xc10 }, + { 0xc12, 0xc28 }, + { 0xc2a, 0xc39 }, + { 0xc3d, 0xc3d }, + { 0xc58, 0xc5a }, + { 0xc5d, 0xc5d }, + { 0xc60, 0xc61 }, + { 0xc80, 0xc80 }, + { 0xc85, 0xc8c }, + { 0xc8e, 0xc90 }, + { 0xc92, 0xca8 }, + { 0xcaa, 0xcb3 }, + { 0xcb5, 0xcb9 }, + { 0xcbd, 0xcbd }, + { 0xcdd, 0xcde }, + { 0xce0, 0xce1 }, + { 0xcf1, 0xcf2 }, + { 0xd04, 0xd0c }, + { 0xd0e, 0xd10 }, + { 0xd12, 0xd3a }, + { 0xd3d, 0xd3d }, + { 0xd4e, 0xd4e }, + { 0xd54, 0xd56 }, + { 0xd5f, 0xd61 }, + { 0xd7a, 0xd7f }, + { 0xd85, 0xd96 }, + { 0xd9a, 0xdb1 }, + { 0xdb3, 0xdbb }, + { 0xdbd, 0xdbd }, + { 0xdc0, 0xdc6 }, + { 0xe01, 0xe30 }, + { 0xe32, 0xe32 }, + { 0xe40, 0xe46 }, + { 0xe81, 0xe82 }, + { 0xe84, 0xe84 }, + { 0xe86, 0xe8a }, + { 0xe8c, 0xea3 }, + { 0xea5, 0xea5 }, + { 0xea7, 0xeb0 }, + { 0xeb2, 0xeb2 }, + { 0xebd, 0xebd }, + { 0xec0, 0xec4 }, + { 0xec6, 0xec6 }, + { 0xedc, 0xedf }, + { 0xf00, 0xf00 }, + { 0xf40, 0xf47 }, + { 0xf49, 0xf6c }, + { 0xf88, 0xf8c }, + { 0x1000, 0x102a }, + { 0x103f, 0x103f }, + { 0x1050, 0x1055 }, + { 0x105a, 0x105d }, + { 0x1061, 0x1061 }, + { 0x1065, 0x1066 }, + { 0x106e, 0x1070 }, + { 0x1075, 0x1081 }, + { 0x108e, 0x108e }, + { 0x10a0, 0x10c5 }, + { 0x10c7, 0x10c7 }, + { 0x10cd, 0x10cd }, + { 0x10d0, 0x10fa }, + { 0x10fc, 0x1248 }, + { 0x124a, 0x124d }, + { 0x1250, 0x1256 }, + { 0x1258, 0x1258 }, + { 0x125a, 0x125d }, + { 0x1260, 0x1288 }, + { 0x128a, 0x128d }, + { 0x1290, 0x12b0 }, + { 0x12b2, 0x12b5 }, + { 0x12b8, 0x12be }, + { 0x12c0, 0x12c0 }, + { 0x12c2, 0x12c5 }, + { 0x12c8, 0x12d6 }, + { 0x12d8, 0x1310 }, + { 0x1312, 0x1315 }, + { 0x1318, 0x135a }, + { 0x1380, 0x138f }, + { 0x13a0, 0x13f5 }, + { 0x13f8, 0x13fd }, + { 0x1401, 0x166c }, + { 0x166f, 0x167f }, + { 0x1681, 0x169a }, + { 0x16a0, 0x16ea }, + { 0x16ee, 0x16f8 }, + { 0x1700, 0x1711 }, + { 0x171f, 0x1731 }, + { 0x1740, 0x1751 }, + { 0x1760, 0x176c }, + { 0x176e, 0x1770 }, + { 0x1780, 0x17b3 }, + { 0x17d7, 0x17d7 }, + { 0x17dc, 0x17dc }, + { 0x1820, 0x1878 }, + { 0x1880, 0x18a8 }, + { 0x18aa, 0x18aa }, + { 0x18b0, 0x18f5 }, + { 0x1900, 0x191e }, + { 0x1950, 0x196d }, + { 0x1970, 0x1974 }, + { 0x1980, 0x19ab }, + { 0x19b0, 0x19c9 }, + { 0x1a00, 0x1a16 }, + { 0x1a20, 0x1a54 }, + { 0x1aa7, 0x1aa7 }, + { 0x1b05, 0x1b33 }, + { 0x1b45, 0x1b4c }, + { 0x1b83, 0x1ba0 }, + { 0x1bae, 0x1baf }, + { 0x1bba, 0x1be5 }, + { 0x1c00, 0x1c23 }, + { 0x1c4d, 0x1c4f }, + { 0x1c5a, 0x1c7d }, + { 0x1c80, 0x1c8a }, + { 0x1c90, 0x1cba }, + { 0x1cbd, 0x1cbf }, + { 0x1ce9, 0x1cec }, + { 0x1cee, 0x1cf3 }, + { 0x1cf5, 0x1cf6 }, + { 0x1cfa, 0x1cfa }, + { 0x1d00, 0x1dbf }, + { 0x1e00, 0x1f15 }, + { 0x1f18, 0x1f1d }, + { 0x1f20, 0x1f45 }, + { 0x1f48, 0x1f4d }, + { 0x1f50, 0x1f57 }, + { 0x1f59, 0x1f59 }, + { 0x1f5b, 0x1f5b }, + { 0x1f5d, 0x1f5d }, + { 0x1f5f, 0x1f7d }, + { 0x1f80, 0x1fb4 }, + { 0x1fb6, 0x1fbc }, + { 0x1fbe, 0x1fbe }, + { 0x1fc2, 0x1fc4 }, + { 0x1fc6, 0x1fcc }, + { 0x1fd0, 0x1fd3 }, + { 0x1fd6, 0x1fdb }, + { 0x1fe0, 0x1fec }, + { 0x1ff2, 0x1ff4 }, + { 0x1ff6, 0x1ffc }, + { 0x2071, 0x2071 }, + { 0x207f, 0x207f }, + { 0x2090, 0x209c }, + { 0x2102, 0x2102 }, + { 0x2107, 0x2107 }, + { 0x210a, 0x2113 }, + { 0x2115, 0x2115 }, + { 0x2118, 0x211d }, + { 0x2124, 0x2124 }, + { 0x2126, 0x2126 }, + { 0x2128, 0x2128 }, + { 0x212a, 0x2139 }, + { 0x213c, 0x213f }, + { 0x2145, 0x2149 }, + { 0x214e, 0x214e }, + { 0x2160, 0x2188 }, + { 0x2c00, 0x2ce4 }, + { 0x2ceb, 0x2cee }, + { 0x2cf2, 0x2cf3 }, + { 0x2d00, 0x2d25 }, + { 0x2d27, 0x2d27 }, + { 0x2d2d, 0x2d2d }, + { 0x2d30, 0x2d67 }, + { 0x2d6f, 0x2d6f }, + { 0x2d80, 0x2d96 }, + { 0x2da0, 0x2da6 }, + { 0x2da8, 0x2dae }, + { 0x2db0, 0x2db6 }, + { 0x2db8, 0x2dbe }, + { 0x2dc0, 0x2dc6 }, + { 0x2dc8, 0x2dce }, + { 0x2dd0, 0x2dd6 }, + { 0x2dd8, 0x2dde }, + { 0x3005, 0x3007 }, + { 0x3021, 0x3029 }, + { 0x3031, 0x3035 }, + { 0x3038, 0x303c }, + { 0x3041, 0x3096 }, + { 0x309d, 0x309f }, + { 0x30a1, 0x30fa }, + { 0x30fc, 0x30ff }, + { 0x3105, 0x312f }, + { 0x3131, 0x318e }, + { 0x31a0, 0x31bf }, + { 0x31f0, 0x31ff }, + { 0x3400, 0x4dbf }, + { 0x4e00, 0xa48c }, + { 0xa4d0, 0xa4fd }, + { 0xa500, 0xa60c }, + { 0xa610, 0xa61f }, + { 0xa62a, 0xa62b }, + { 0xa640, 0xa66e }, + { 0xa67f, 0xa69d }, + { 0xa6a0, 0xa6ef }, + { 0xa717, 0xa71f }, + { 0xa722, 0xa788 }, + { 0xa78b, 0xa7cd }, + { 0xa7d0, 0xa7d1 }, + { 0xa7d3, 0xa7d3 }, + { 0xa7d5, 0xa7dc }, + { 0xa7f2, 0xa801 }, + { 0xa803, 0xa805 }, + { 0xa807, 0xa80a }, + { 0xa80c, 0xa822 }, + { 0xa840, 0xa873 }, + { 0xa882, 0xa8b3 }, + { 0xa8f2, 0xa8f7 }, + { 0xa8fb, 0xa8fb }, + { 0xa8fd, 0xa8fe }, + { 0xa90a, 0xa925 }, + { 0xa930, 0xa946 }, + { 0xa960, 0xa97c }, + { 0xa984, 0xa9b2 }, + { 0xa9cf, 0xa9cf }, + { 0xa9e0, 0xa9e4 }, + { 0xa9e6, 0xa9ef }, + { 0xa9fa, 0xa9fe }, + { 0xaa00, 0xaa28 }, + { 0xaa40, 0xaa42 }, + { 0xaa44, 0xaa4b }, + { 0xaa60, 0xaa76 }, + { 0xaa7a, 0xaa7a }, + { 0xaa7e, 0xaaaf }, + { 0xaab1, 0xaab1 }, + { 0xaab5, 0xaab6 }, + { 0xaab9, 0xaabd }, + { 0xaac0, 0xaac0 }, + { 0xaac2, 0xaac2 }, + { 0xaadb, 0xaadd }, + { 0xaae0, 0xaaea }, + { 0xaaf2, 0xaaf4 }, + { 0xab01, 0xab06 }, + { 0xab09, 0xab0e }, + { 0xab11, 0xab16 }, + { 0xab20, 0xab26 }, + { 0xab28, 0xab2e }, + { 0xab30, 0xab5a }, + { 0xab5c, 0xab69 }, + { 0xab70, 0xabe2 }, + { 0xac00, 0xd7a3 }, + { 0xd7b0, 0xd7c6 }, + { 0xd7cb, 0xd7fb }, + { 0xf900, 0xfa6d }, + { 0xfa70, 0xfad9 }, + { 0xfb00, 0xfb06 }, + { 0xfb13, 0xfb17 }, + { 0xfb1d, 0xfb1d }, + { 0xfb1f, 0xfb28 }, + { 0xfb2a, 0xfb36 }, + { 0xfb38, 0xfb3c }, + { 0xfb3e, 0xfb3e }, + { 0xfb40, 0xfb41 }, + { 0xfb43, 0xfb44 }, + { 0xfb46, 0xfbb1 }, + { 0xfbd3, 0xfc5d }, + { 0xfc64, 0xfd3d }, + { 0xfd50, 0xfd8f }, + { 0xfd92, 0xfdc7 }, + { 0xfdf0, 0xfdf9 }, + { 0xfe71, 0xfe71 }, + { 0xfe73, 0xfe73 }, + { 0xfe77, 0xfe77 }, + { 0xfe79, 0xfe79 }, + { 0xfe7b, 0xfe7b }, + { 0xfe7d, 0xfe7d }, + { 0xfe7f, 0xfefc }, + { 0xff21, 0xff3a }, + { 0xff41, 0xff5a }, + { 0xff66, 0xff9d }, + { 0xffa0, 0xffbe }, + { 0xffc2, 0xffc7 }, + { 0xffca, 0xffcf }, + { 0xffd2, 0xffd7 }, + { 0xffda, 0xffdc }, + { 0x10000, 0x1000b }, + { 0x1000d, 0x10026 }, + { 0x10028, 0x1003a }, + { 0x1003c, 0x1003d }, + { 0x1003f, 0x1004d }, + { 0x10050, 0x1005d }, + { 0x10080, 0x100fa }, + { 0x10140, 0x10174 }, + { 0x10280, 0x1029c }, + { 0x102a0, 0x102d0 }, + { 0x10300, 0x1031f }, + { 0x1032d, 0x1034a }, + { 0x10350, 0x10375 }, + { 0x10380, 0x1039d }, + { 0x103a0, 0x103c3 }, + { 0x103c8, 0x103cf }, + { 0x103d1, 0x103d5 }, + { 0x10400, 0x1049d }, + { 0x104b0, 0x104d3 }, + { 0x104d8, 0x104fb }, + { 0x10500, 0x10527 }, + { 0x10530, 0x10563 }, + { 0x10570, 0x1057a }, + { 0x1057c, 0x1058a }, + { 0x1058c, 0x10592 }, + { 0x10594, 0x10595 }, + { 0x10597, 0x105a1 }, + { 0x105a3, 0x105b1 }, + { 0x105b3, 0x105b9 }, + { 0x105bb, 0x105bc }, + { 0x105c0, 0x105f3 }, + { 0x10600, 0x10736 }, + { 0x10740, 0x10755 }, + { 0x10760, 0x10767 }, + { 0x10780, 0x10785 }, + { 0x10787, 0x107b0 }, + { 0x107b2, 0x107ba }, + { 0x10800, 0x10805 }, + { 0x10808, 0x10808 }, + { 0x1080a, 0x10835 }, + { 0x10837, 0x10838 }, + { 0x1083c, 0x1083c }, + { 0x1083f, 0x10855 }, + { 0x10860, 0x10876 }, + { 0x10880, 0x1089e }, + { 0x108e0, 0x108f2 }, + { 0x108f4, 0x108f5 }, + { 0x10900, 0x10915 }, + { 0x10920, 0x10939 }, + { 0x10980, 0x109b7 }, + { 0x109be, 0x109bf }, + { 0x10a00, 0x10a00 }, + { 0x10a10, 0x10a13 }, + { 0x10a15, 0x10a17 }, + { 0x10a19, 0x10a35 }, + { 0x10a60, 0x10a7c }, + { 0x10a80, 0x10a9c }, + { 0x10ac0, 0x10ac7 }, + { 0x10ac9, 0x10ae4 }, + { 0x10b00, 0x10b35 }, + { 0x10b40, 0x10b55 }, + { 0x10b60, 0x10b72 }, + { 0x10b80, 0x10b91 }, + { 0x10c00, 0x10c48 }, + { 0x10c80, 0x10cb2 }, + { 0x10cc0, 0x10cf2 }, + { 0x10d00, 0x10d23 }, + { 0x10d4a, 0x10d65 }, + { 0x10d6f, 0x10d85 }, + { 0x10e80, 0x10ea9 }, + { 0x10eb0, 0x10eb1 }, + { 0x10ec2, 0x10ec4 }, + { 0x10f00, 0x10f1c }, + { 0x10f27, 0x10f27 }, + { 0x10f30, 0x10f45 }, + { 0x10f70, 0x10f81 }, + { 0x10fb0, 0x10fc4 }, + { 0x10fe0, 0x10ff6 }, + { 0x11003, 0x11037 }, + { 0x11071, 0x11072 }, + { 0x11075, 0x11075 }, + { 0x11083, 0x110af }, + { 0x110d0, 0x110e8 }, + { 0x11103, 0x11126 }, + { 0x11144, 0x11144 }, + { 0x11147, 0x11147 }, + { 0x11150, 0x11172 }, + { 0x11176, 0x11176 }, + { 0x11183, 0x111b2 }, + { 0x111c1, 0x111c4 }, + { 0x111da, 0x111da }, + { 0x111dc, 0x111dc }, + { 0x11200, 0x11211 }, + { 0x11213, 0x1122b }, + { 0x1123f, 0x11240 }, + { 0x11280, 0x11286 }, + { 0x11288, 0x11288 }, + { 0x1128a, 0x1128d }, + { 0x1128f, 0x1129d }, + { 0x1129f, 0x112a8 }, + { 0x112b0, 0x112de }, + { 0x11305, 0x1130c }, + { 0x1130f, 0x11310 }, + { 0x11313, 0x11328 }, + { 0x1132a, 0x11330 }, + { 0x11332, 0x11333 }, + { 0x11335, 0x11339 }, + { 0x1133d, 0x1133d }, + { 0x11350, 0x11350 }, + { 0x1135d, 0x11361 }, + { 0x11380, 0x11389 }, + { 0x1138b, 0x1138b }, + { 0x1138e, 0x1138e }, + { 0x11390, 0x113b5 }, + { 0x113b7, 0x113b7 }, + { 0x113d1, 0x113d1 }, + { 0x113d3, 0x113d3 }, + { 0x11400, 0x11434 }, + { 0x11447, 0x1144a }, + { 0x1145f, 0x11461 }, + { 0x11480, 0x114af }, + { 0x114c4, 0x114c5 }, + { 0x114c7, 0x114c7 }, + { 0x11580, 0x115ae }, + { 0x115d8, 0x115db }, + { 0x11600, 0x1162f }, + { 0x11644, 0x11644 }, + { 0x11680, 0x116aa }, + { 0x116b8, 0x116b8 }, + { 0x11700, 0x1171a }, + { 0x11740, 0x11746 }, + { 0x11800, 0x1182b }, + { 0x118a0, 0x118df }, + { 0x118ff, 0x11906 }, + { 0x11909, 0x11909 }, + { 0x1190c, 0x11913 }, + { 0x11915, 0x11916 }, + { 0x11918, 0x1192f }, + { 0x1193f, 0x1193f }, + { 0x11941, 0x11941 }, + { 0x119a0, 0x119a7 }, + { 0x119aa, 0x119d0 }, + { 0x119e1, 0x119e1 }, + { 0x119e3, 0x119e3 }, + { 0x11a00, 0x11a00 }, + { 0x11a0b, 0x11a32 }, + { 0x11a3a, 0x11a3a }, + { 0x11a50, 0x11a50 }, + { 0x11a5c, 0x11a89 }, + { 0x11a9d, 0x11a9d }, + { 0x11ab0, 0x11af8 }, + { 0x11bc0, 0x11be0 }, + { 0x11c00, 0x11c08 }, + { 0x11c0a, 0x11c2e }, + { 0x11c40, 0x11c40 }, + { 0x11c72, 0x11c8f }, + { 0x11d00, 0x11d06 }, + { 0x11d08, 0x11d09 }, + { 0x11d0b, 0x11d30 }, + { 0x11d46, 0x11d46 }, + { 0x11d60, 0x11d65 }, + { 0x11d67, 0x11d68 }, + { 0x11d6a, 0x11d89 }, + { 0x11d98, 0x11d98 }, + { 0x11ee0, 0x11ef2 }, + { 0x11f02, 0x11f02 }, + { 0x11f04, 0x11f10 }, + { 0x11f12, 0x11f33 }, + { 0x11fb0, 0x11fb0 }, + { 0x12000, 0x12399 }, + { 0x12400, 0x1246e }, + { 0x12480, 0x12543 }, + { 0x12f90, 0x12ff0 }, + { 0x13000, 0x1342f }, + { 0x13441, 0x13446 }, + { 0x13460, 0x143fa }, + { 0x14400, 0x14646 }, + { 0x16100, 0x1611d }, + { 0x16800, 0x16a38 }, + { 0x16a40, 0x16a5e }, + { 0x16a70, 0x16abe }, + { 0x16ad0, 0x16aed }, + { 0x16b00, 0x16b2f }, + { 0x16b40, 0x16b43 }, + { 0x16b63, 0x16b77 }, + { 0x16b7d, 0x16b8f }, + { 0x16d40, 0x16d6c }, + { 0x16e40, 0x16e7f }, + { 0x16f00, 0x16f4a }, + { 0x16f50, 0x16f50 }, + { 0x16f93, 0x16f9f }, + { 0x16fe0, 0x16fe1 }, + { 0x16fe3, 0x16fe3 }, + { 0x17000, 0x187f7 }, + { 0x18800, 0x18cd5 }, + { 0x18cff, 0x18d08 }, + { 0x1aff0, 0x1aff3 }, + { 0x1aff5, 0x1affb }, + { 0x1affd, 0x1affe }, + { 0x1b000, 0x1b122 }, + { 0x1b132, 0x1b132 }, + { 0x1b150, 0x1b152 }, + { 0x1b155, 0x1b155 }, + { 0x1b164, 0x1b167 }, + { 0x1b170, 0x1b2fb }, + { 0x1bc00, 0x1bc6a }, + { 0x1bc70, 0x1bc7c }, + { 0x1bc80, 0x1bc88 }, + { 0x1bc90, 0x1bc99 }, + { 0x1d400, 0x1d454 }, + { 0x1d456, 0x1d49c }, + { 0x1d49e, 0x1d49f }, + { 0x1d4a2, 0x1d4a2 }, + { 0x1d4a5, 0x1d4a6 }, + { 0x1d4a9, 0x1d4ac }, + { 0x1d4ae, 0x1d4b9 }, + { 0x1d4bb, 0x1d4bb }, + { 0x1d4bd, 0x1d4c3 }, + { 0x1d4c5, 0x1d505 }, + { 0x1d507, 0x1d50a }, + { 0x1d50d, 0x1d514 }, + { 0x1d516, 0x1d51c }, + { 0x1d51e, 0x1d539 }, + { 0x1d53b, 0x1d53e }, + { 0x1d540, 0x1d544 }, + { 0x1d546, 0x1d546 }, + { 0x1d54a, 0x1d550 }, + { 0x1d552, 0x1d6a5 }, + { 0x1d6a8, 0x1d6c0 }, + { 0x1d6c2, 0x1d6da }, + { 0x1d6dc, 0x1d6fa }, + { 0x1d6fc, 0x1d714 }, + { 0x1d716, 0x1d734 }, + { 0x1d736, 0x1d74e }, + { 0x1d750, 0x1d76e }, + { 0x1d770, 0x1d788 }, + { 0x1d78a, 0x1d7a8 }, + { 0x1d7aa, 0x1d7c2 }, + { 0x1d7c4, 0x1d7cb }, + { 0x1df00, 0x1df1e }, + { 0x1df25, 0x1df2a }, + { 0x1e030, 0x1e06d }, + { 0x1e100, 0x1e12c }, + { 0x1e137, 0x1e13d }, + { 0x1e14e, 0x1e14e }, + { 0x1e290, 0x1e2ad }, + { 0x1e2c0, 0x1e2eb }, + { 0x1e4d0, 0x1e4eb }, + { 0x1e5d0, 0x1e5ed }, + { 0x1e5f0, 0x1e5f0 }, + { 0x1e7e0, 0x1e7e6 }, + { 0x1e7e8, 0x1e7eb }, + { 0x1e7ed, 0x1e7ee }, + { 0x1e7f0, 0x1e7fe }, + { 0x1e800, 0x1e8c4 }, + { 0x1e900, 0x1e943 }, + { 0x1e94b, 0x1e94b }, + { 0x1ee00, 0x1ee03 }, + { 0x1ee05, 0x1ee1f }, + { 0x1ee21, 0x1ee22 }, + { 0x1ee24, 0x1ee24 }, + { 0x1ee27, 0x1ee27 }, + { 0x1ee29, 0x1ee32 }, + { 0x1ee34, 0x1ee37 }, + { 0x1ee39, 0x1ee39 }, + { 0x1ee3b, 0x1ee3b }, + { 0x1ee42, 0x1ee42 }, + { 0x1ee47, 0x1ee47 }, + { 0x1ee49, 0x1ee49 }, + { 0x1ee4b, 0x1ee4b }, + { 0x1ee4d, 0x1ee4f }, + { 0x1ee51, 0x1ee52 }, + { 0x1ee54, 0x1ee54 }, + { 0x1ee57, 0x1ee57 }, + { 0x1ee59, 0x1ee59 }, + { 0x1ee5b, 0x1ee5b }, + { 0x1ee5d, 0x1ee5d }, + { 0x1ee5f, 0x1ee5f }, + { 0x1ee61, 0x1ee62 }, + { 0x1ee64, 0x1ee64 }, + { 0x1ee67, 0x1ee6a }, + { 0x1ee6c, 0x1ee72 }, + { 0x1ee74, 0x1ee77 }, + { 0x1ee79, 0x1ee7c }, + { 0x1ee7e, 0x1ee7e }, + { 0x1ee80, 0x1ee89 }, + { 0x1ee8b, 0x1ee9b }, + { 0x1eea1, 0x1eea3 }, + { 0x1eea5, 0x1eea9 }, + { 0x1eeab, 0x1eebb }, + { 0x20000, 0x2a6df }, + { 0x2a700, 0x2b739 }, + { 0x2b740, 0x2b81d }, + { 0x2b820, 0x2cea1 }, + { 0x2ceb0, 0x2ebe0 }, + { 0x2ebf0, 0x2ee5d }, + { 0x2f800, 0x2fa1d }, + { 0x30000, 0x3134a }, + { 0x31350, 0x323af }, +}; + +constexpr inline CharRange xid_continue[] = { + { 0x30, 0x39 }, + { 0x41, 0x5a }, + { 0x5f, 0x5f }, + { 0x61, 0x7a }, + { 0xaa, 0xaa }, + { 0xb5, 0xb5 }, + { 0xb7, 0xb7 }, + { 0xba, 0xba }, + { 0xc0, 0xd6 }, + { 0xd8, 0xf6 }, + { 0xf8, 0x2c1 }, + { 0x2c6, 0x2d1 }, + { 0x2e0, 0x2e4 }, + { 0x2ec, 0x2ec }, + { 0x2ee, 0x2ee }, + { 0x300, 0x374 }, + { 0x376, 0x377 }, + { 0x37b, 0x37d }, + { 0x37f, 0x37f }, + { 0x386, 0x38a }, + { 0x38c, 0x38c }, + { 0x38e, 0x3a1 }, + { 0x3a3, 0x3f5 }, + { 0x3f7, 0x481 }, + { 0x483, 0x487 }, + { 0x48a, 0x52f }, + { 0x531, 0x556 }, + { 0x559, 0x559 }, + { 0x560, 0x588 }, + { 0x591, 0x5bd }, + { 0x5bf, 0x5bf }, + { 0x5c1, 0x5c2 }, + { 0x5c4, 0x5c5 }, + { 0x5c7, 0x5c7 }, + { 0x5d0, 0x5ea }, + { 0x5ef, 0x5f2 }, + { 0x610, 0x61a }, + { 0x620, 0x669 }, + { 0x66e, 0x6d3 }, + { 0x6d5, 0x6dc }, + { 0x6df, 0x6e8 }, + { 0x6ea, 0x6fc }, + { 0x6ff, 0x6ff }, + { 0x710, 0x74a }, + { 0x74d, 0x7b1 }, + { 0x7c0, 0x7f5 }, + { 0x7fa, 0x7fa }, + { 0x7fd, 0x7fd }, + { 0x800, 0x82d }, + { 0x840, 0x85b }, + { 0x860, 0x86a }, + { 0x870, 0x887 }, + { 0x889, 0x88e }, + { 0x897, 0x8e1 }, + { 0x8e3, 0x963 }, + { 0x966, 0x96f }, + { 0x971, 0x983 }, + { 0x985, 0x98c }, + { 0x98f, 0x990 }, + { 0x993, 0x9a8 }, + { 0x9aa, 0x9b0 }, + { 0x9b2, 0x9b2 }, + { 0x9b6, 0x9b9 }, + { 0x9bc, 0x9c4 }, + { 0x9c7, 0x9c8 }, + { 0x9cb, 0x9ce }, + { 0x9d7, 0x9d7 }, + { 0x9dc, 0x9dd }, + { 0x9df, 0x9e3 }, + { 0x9e6, 0x9f1 }, + { 0x9fc, 0x9fc }, + { 0x9fe, 0x9fe }, + { 0xa01, 0xa03 }, + { 0xa05, 0xa0a }, + { 0xa0f, 0xa10 }, + { 0xa13, 0xa28 }, + { 0xa2a, 0xa30 }, + { 0xa32, 0xa33 }, + { 0xa35, 0xa36 }, + { 0xa38, 0xa39 }, + { 0xa3c, 0xa3c }, + { 0xa3e, 0xa42 }, + { 0xa47, 0xa48 }, + { 0xa4b, 0xa4d }, + { 0xa51, 0xa51 }, + { 0xa59, 0xa5c }, + { 0xa5e, 0xa5e }, + { 0xa66, 0xa75 }, + { 0xa81, 0xa83 }, + { 0xa85, 0xa8d }, + { 0xa8f, 0xa91 }, + { 0xa93, 0xaa8 }, + { 0xaaa, 0xab0 }, + { 0xab2, 0xab3 }, + { 0xab5, 0xab9 }, + { 0xabc, 0xac5 }, + { 0xac7, 0xac9 }, + { 0xacb, 0xacd }, + { 0xad0, 0xad0 }, + { 0xae0, 0xae3 }, + { 0xae6, 0xaef }, + { 0xaf9, 0xaff }, + { 0xb01, 0xb03 }, + { 0xb05, 0xb0c }, + { 0xb0f, 0xb10 }, + { 0xb13, 0xb28 }, + { 0xb2a, 0xb30 }, + { 0xb32, 0xb33 }, + { 0xb35, 0xb39 }, + { 0xb3c, 0xb44 }, + { 0xb47, 0xb48 }, + { 0xb4b, 0xb4d }, + { 0xb55, 0xb57 }, + { 0xb5c, 0xb5d }, + { 0xb5f, 0xb63 }, + { 0xb66, 0xb6f }, + { 0xb71, 0xb71 }, + { 0xb82, 0xb83 }, + { 0xb85, 0xb8a }, + { 0xb8e, 0xb90 }, + { 0xb92, 0xb95 }, + { 0xb99, 0xb9a }, + { 0xb9c, 0xb9c }, + { 0xb9e, 0xb9f }, + { 0xba3, 0xba4 }, + { 0xba8, 0xbaa }, + { 0xbae, 0xbb9 }, + { 0xbbe, 0xbc2 }, + { 0xbc6, 0xbc8 }, + { 0xbca, 0xbcd }, + { 0xbd0, 0xbd0 }, + { 0xbd7, 0xbd7 }, + { 0xbe6, 0xbef }, + { 0xc00, 0xc0c }, + { 0xc0e, 0xc10 }, + { 0xc12, 0xc28 }, + { 0xc2a, 0xc39 }, + { 0xc3c, 0xc44 }, + { 0xc46, 0xc48 }, + { 0xc4a, 0xc4d }, + { 0xc55, 0xc56 }, + { 0xc58, 0xc5a }, + { 0xc5d, 0xc5d }, + { 0xc60, 0xc63 }, + { 0xc66, 0xc6f }, + { 0xc80, 0xc83 }, + { 0xc85, 0xc8c }, + { 0xc8e, 0xc90 }, + { 0xc92, 0xca8 }, + { 0xcaa, 0xcb3 }, + { 0xcb5, 0xcb9 }, + { 0xcbc, 0xcc4 }, + { 0xcc6, 0xcc8 }, + { 0xcca, 0xccd }, + { 0xcd5, 0xcd6 }, + { 0xcdd, 0xcde }, + { 0xce0, 0xce3 }, + { 0xce6, 0xcef }, + { 0xcf1, 0xcf3 }, + { 0xd00, 0xd0c }, + { 0xd0e, 0xd10 }, + { 0xd12, 0xd44 }, + { 0xd46, 0xd48 }, + { 0xd4a, 0xd4e }, + { 0xd54, 0xd57 }, + { 0xd5f, 0xd63 }, + { 0xd66, 0xd6f }, + { 0xd7a, 0xd7f }, + { 0xd81, 0xd83 }, + { 0xd85, 0xd96 }, + { 0xd9a, 0xdb1 }, + { 0xdb3, 0xdbb }, + { 0xdbd, 0xdbd }, + { 0xdc0, 0xdc6 }, + { 0xdca, 0xdca }, + { 0xdcf, 0xdd4 }, + { 0xdd6, 0xdd6 }, + { 0xdd8, 0xddf }, + { 0xde6, 0xdef }, + { 0xdf2, 0xdf3 }, + { 0xe01, 0xe3a }, + { 0xe40, 0xe4e }, + { 0xe50, 0xe59 }, + { 0xe81, 0xe82 }, + { 0xe84, 0xe84 }, + { 0xe86, 0xe8a }, + { 0xe8c, 0xea3 }, + { 0xea5, 0xea5 }, + { 0xea7, 0xebd }, + { 0xec0, 0xec4 }, + { 0xec6, 0xec6 }, + { 0xec8, 0xece }, + { 0xed0, 0xed9 }, + { 0xedc, 0xedf }, + { 0xf00, 0xf00 }, + { 0xf18, 0xf19 }, + { 0xf20, 0xf29 }, + { 0xf35, 0xf35 }, + { 0xf37, 0xf37 }, + { 0xf39, 0xf39 }, + { 0xf3e, 0xf47 }, + { 0xf49, 0xf6c }, + { 0xf71, 0xf84 }, + { 0xf86, 0xf97 }, + { 0xf99, 0xfbc }, + { 0xfc6, 0xfc6 }, + { 0x1000, 0x1049 }, + { 0x1050, 0x109d }, + { 0x10a0, 0x10c5 }, + { 0x10c7, 0x10c7 }, + { 0x10cd, 0x10cd }, + { 0x10d0, 0x10fa }, + { 0x10fc, 0x1248 }, + { 0x124a, 0x124d }, + { 0x1250, 0x1256 }, + { 0x1258, 0x1258 }, + { 0x125a, 0x125d }, + { 0x1260, 0x1288 }, + { 0x128a, 0x128d }, + { 0x1290, 0x12b0 }, + { 0x12b2, 0x12b5 }, + { 0x12b8, 0x12be }, + { 0x12c0, 0x12c0 }, + { 0x12c2, 0x12c5 }, + { 0x12c8, 0x12d6 }, + { 0x12d8, 0x1310 }, + { 0x1312, 0x1315 }, + { 0x1318, 0x135a }, + { 0x135d, 0x135f }, + { 0x1369, 0x1371 }, + { 0x1380, 0x138f }, + { 0x13a0, 0x13f5 }, + { 0x13f8, 0x13fd }, + { 0x1401, 0x166c }, + { 0x166f, 0x167f }, + { 0x1681, 0x169a }, + { 0x16a0, 0x16ea }, + { 0x16ee, 0x16f8 }, + { 0x1700, 0x1715 }, + { 0x171f, 0x1734 }, + { 0x1740, 0x1753 }, + { 0x1760, 0x176c }, + { 0x176e, 0x1770 }, + { 0x1772, 0x1773 }, + { 0x1780, 0x17d3 }, + { 0x17d7, 0x17d7 }, + { 0x17dc, 0x17dd }, + { 0x17e0, 0x17e9 }, + { 0x180b, 0x180d }, + { 0x180f, 0x1819 }, + { 0x1820, 0x1878 }, + { 0x1880, 0x18aa }, + { 0x18b0, 0x18f5 }, + { 0x1900, 0x191e }, + { 0x1920, 0x192b }, + { 0x1930, 0x193b }, + { 0x1946, 0x196d }, + { 0x1970, 0x1974 }, + { 0x1980, 0x19ab }, + { 0x19b0, 0x19c9 }, + { 0x19d0, 0x19da }, + { 0x1a00, 0x1a1b }, + { 0x1a20, 0x1a5e }, + { 0x1a60, 0x1a7c }, + { 0x1a7f, 0x1a89 }, + { 0x1a90, 0x1a99 }, + { 0x1aa7, 0x1aa7 }, + { 0x1ab0, 0x1abd }, + { 0x1abf, 0x1ace }, + { 0x1b00, 0x1b4c }, + { 0x1b50, 0x1b59 }, + { 0x1b6b, 0x1b73 }, + { 0x1b80, 0x1bf3 }, + { 0x1c00, 0x1c37 }, + { 0x1c40, 0x1c49 }, + { 0x1c4d, 0x1c7d }, + { 0x1c80, 0x1c8a }, + { 0x1c90, 0x1cba }, + { 0x1cbd, 0x1cbf }, + { 0x1cd0, 0x1cd2 }, + { 0x1cd4, 0x1cfa }, + { 0x1d00, 0x1f15 }, + { 0x1f18, 0x1f1d }, + { 0x1f20, 0x1f45 }, + { 0x1f48, 0x1f4d }, + { 0x1f50, 0x1f57 }, + { 0x1f59, 0x1f59 }, + { 0x1f5b, 0x1f5b }, + { 0x1f5d, 0x1f5d }, + { 0x1f5f, 0x1f7d }, + { 0x1f80, 0x1fb4 }, + { 0x1fb6, 0x1fbc }, + { 0x1fbe, 0x1fbe }, + { 0x1fc2, 0x1fc4 }, + { 0x1fc6, 0x1fcc }, + { 0x1fd0, 0x1fd3 }, + { 0x1fd6, 0x1fdb }, + { 0x1fe0, 0x1fec }, + { 0x1ff2, 0x1ff4 }, + { 0x1ff6, 0x1ffc }, + { 0x200c, 0x200d }, + { 0x203f, 0x2040 }, + { 0x2054, 0x2054 }, + { 0x2071, 0x2071 }, + { 0x207f, 0x207f }, + { 0x2090, 0x209c }, + { 0x20d0, 0x20dc }, + { 0x20e1, 0x20e1 }, + { 0x20e5, 0x20f0 }, + { 0x2102, 0x2102 }, + { 0x2107, 0x2107 }, + { 0x210a, 0x2113 }, + { 0x2115, 0x2115 }, + { 0x2118, 0x211d }, + { 0x2124, 0x2124 }, + { 0x2126, 0x2126 }, + { 0x2128, 0x2128 }, + { 0x212a, 0x2139 }, + { 0x213c, 0x213f }, + { 0x2145, 0x2149 }, + { 0x214e, 0x214e }, + { 0x2160, 0x2188 }, + { 0x2c00, 0x2ce4 }, + { 0x2ceb, 0x2cf3 }, + { 0x2d00, 0x2d25 }, + { 0x2d27, 0x2d27 }, + { 0x2d2d, 0x2d2d }, + { 0x2d30, 0x2d67 }, + { 0x2d6f, 0x2d6f }, + { 0x2d7f, 0x2d96 }, + { 0x2da0, 0x2da6 }, + { 0x2da8, 0x2dae }, + { 0x2db0, 0x2db6 }, + { 0x2db8, 0x2dbe }, + { 0x2dc0, 0x2dc6 }, + { 0x2dc8, 0x2dce }, + { 0x2dd0, 0x2dd6 }, + { 0x2dd8, 0x2dde }, + { 0x2de0, 0x2dff }, + { 0x3005, 0x3007 }, + { 0x3021, 0x302f }, + { 0x3031, 0x3035 }, + { 0x3038, 0x303c }, + { 0x3041, 0x3096 }, + { 0x3099, 0x309a }, + { 0x309d, 0x309f }, + { 0x30a1, 0x30ff }, + { 0x3105, 0x312f }, + { 0x3131, 0x318e }, + { 0x31a0, 0x31bf }, + { 0x31f0, 0x31ff }, + { 0x3400, 0x4dbf }, + { 0x4e00, 0xa48c }, + { 0xa4d0, 0xa4fd }, + { 0xa500, 0xa60c }, + { 0xa610, 0xa62b }, + { 0xa640, 0xa66f }, + { 0xa674, 0xa67d }, + { 0xa67f, 0xa6f1 }, + { 0xa717, 0xa71f }, + { 0xa722, 0xa788 }, + { 0xa78b, 0xa7cd }, + { 0xa7d0, 0xa7d1 }, + { 0xa7d3, 0xa7d3 }, + { 0xa7d5, 0xa7dc }, + { 0xa7f2, 0xa827 }, + { 0xa82c, 0xa82c }, + { 0xa840, 0xa873 }, + { 0xa880, 0xa8c5 }, + { 0xa8d0, 0xa8d9 }, + { 0xa8e0, 0xa8f7 }, + { 0xa8fb, 0xa8fb }, + { 0xa8fd, 0xa92d }, + { 0xa930, 0xa953 }, + { 0xa960, 0xa97c }, + { 0xa980, 0xa9c0 }, + { 0xa9cf, 0xa9d9 }, + { 0xa9e0, 0xa9fe }, + { 0xaa00, 0xaa36 }, + { 0xaa40, 0xaa4d }, + { 0xaa50, 0xaa59 }, + { 0xaa60, 0xaa76 }, + { 0xaa7a, 0xaac2 }, + { 0xaadb, 0xaadd }, + { 0xaae0, 0xaaef }, + { 0xaaf2, 0xaaf6 }, + { 0xab01, 0xab06 }, + { 0xab09, 0xab0e }, + { 0xab11, 0xab16 }, + { 0xab20, 0xab26 }, + { 0xab28, 0xab2e }, + { 0xab30, 0xab5a }, + { 0xab5c, 0xab69 }, + { 0xab70, 0xabea }, + { 0xabec, 0xabed }, + { 0xabf0, 0xabf9 }, + { 0xac00, 0xd7a3 }, + { 0xd7b0, 0xd7c6 }, + { 0xd7cb, 0xd7fb }, + { 0xf900, 0xfa6d }, + { 0xfa70, 0xfad9 }, + { 0xfb00, 0xfb06 }, + { 0xfb13, 0xfb17 }, + { 0xfb1d, 0xfb28 }, + { 0xfb2a, 0xfb36 }, + { 0xfb38, 0xfb3c }, + { 0xfb3e, 0xfb3e }, + { 0xfb40, 0xfb41 }, + { 0xfb43, 0xfb44 }, + { 0xfb46, 0xfbb1 }, + { 0xfbd3, 0xfc5d }, + { 0xfc64, 0xfd3d }, + { 0xfd50, 0xfd8f }, + { 0xfd92, 0xfdc7 }, + { 0xfdf0, 0xfdf9 }, + { 0xfe00, 0xfe0f }, + { 0xfe20, 0xfe2f }, + { 0xfe33, 0xfe34 }, + { 0xfe4d, 0xfe4f }, + { 0xfe71, 0xfe71 }, + { 0xfe73, 0xfe73 }, + { 0xfe77, 0xfe77 }, + { 0xfe79, 0xfe79 }, + { 0xfe7b, 0xfe7b }, + { 0xfe7d, 0xfe7d }, + { 0xfe7f, 0xfefc }, + { 0xff10, 0xff19 }, + { 0xff21, 0xff3a }, + { 0xff3f, 0xff3f }, + { 0xff41, 0xff5a }, + { 0xff65, 0xffbe }, + { 0xffc2, 0xffc7 }, + { 0xffca, 0xffcf }, + { 0xffd2, 0xffd7 }, + { 0xffda, 0xffdc }, + { 0x10000, 0x1000b }, + { 0x1000d, 0x10026 }, + { 0x10028, 0x1003a }, + { 0x1003c, 0x1003d }, + { 0x1003f, 0x1004d }, + { 0x10050, 0x1005d }, + { 0x10080, 0x100fa }, + { 0x10140, 0x10174 }, + { 0x101fd, 0x101fd }, + { 0x10280, 0x1029c }, + { 0x102a0, 0x102d0 }, + { 0x102e0, 0x102e0 }, + { 0x10300, 0x1031f }, + { 0x1032d, 0x1034a }, + { 0x10350, 0x1037a }, + { 0x10380, 0x1039d }, + { 0x103a0, 0x103c3 }, + { 0x103c8, 0x103cf }, + { 0x103d1, 0x103d5 }, + { 0x10400, 0x1049d }, + { 0x104a0, 0x104a9 }, + { 0x104b0, 0x104d3 }, + { 0x104d8, 0x104fb }, + { 0x10500, 0x10527 }, + { 0x10530, 0x10563 }, + { 0x10570, 0x1057a }, + { 0x1057c, 0x1058a }, + { 0x1058c, 0x10592 }, + { 0x10594, 0x10595 }, + { 0x10597, 0x105a1 }, + { 0x105a3, 0x105b1 }, + { 0x105b3, 0x105b9 }, + { 0x105bb, 0x105bc }, + { 0x105c0, 0x105f3 }, + { 0x10600, 0x10736 }, + { 0x10740, 0x10755 }, + { 0x10760, 0x10767 }, + { 0x10780, 0x10785 }, + { 0x10787, 0x107b0 }, + { 0x107b2, 0x107ba }, + { 0x10800, 0x10805 }, + { 0x10808, 0x10808 }, + { 0x1080a, 0x10835 }, + { 0x10837, 0x10838 }, + { 0x1083c, 0x1083c }, + { 0x1083f, 0x10855 }, + { 0x10860, 0x10876 }, + { 0x10880, 0x1089e }, + { 0x108e0, 0x108f2 }, + { 0x108f4, 0x108f5 }, + { 0x10900, 0x10915 }, + { 0x10920, 0x10939 }, + { 0x10980, 0x109b7 }, + { 0x109be, 0x109bf }, + { 0x10a00, 0x10a03 }, + { 0x10a05, 0x10a06 }, + { 0x10a0c, 0x10a13 }, + { 0x10a15, 0x10a17 }, + { 0x10a19, 0x10a35 }, + { 0x10a38, 0x10a3a }, + { 0x10a3f, 0x10a3f }, + { 0x10a60, 0x10a7c }, + { 0x10a80, 0x10a9c }, + { 0x10ac0, 0x10ac7 }, + { 0x10ac9, 0x10ae6 }, + { 0x10b00, 0x10b35 }, + { 0x10b40, 0x10b55 }, + { 0x10b60, 0x10b72 }, + { 0x10b80, 0x10b91 }, + { 0x10c00, 0x10c48 }, + { 0x10c80, 0x10cb2 }, + { 0x10cc0, 0x10cf2 }, + { 0x10d00, 0x10d27 }, + { 0x10d30, 0x10d39 }, + { 0x10d40, 0x10d65 }, + { 0x10d69, 0x10d6d }, + { 0x10d6f, 0x10d85 }, + { 0x10e80, 0x10ea9 }, + { 0x10eab, 0x10eac }, + { 0x10eb0, 0x10eb1 }, + { 0x10ec2, 0x10ec4 }, + { 0x10efc, 0x10f1c }, + { 0x10f27, 0x10f27 }, + { 0x10f30, 0x10f50 }, + { 0x10f70, 0x10f85 }, + { 0x10fb0, 0x10fc4 }, + { 0x10fe0, 0x10ff6 }, + { 0x11000, 0x11046 }, + { 0x11066, 0x11075 }, + { 0x1107f, 0x110ba }, + { 0x110c2, 0x110c2 }, + { 0x110d0, 0x110e8 }, + { 0x110f0, 0x110f9 }, + { 0x11100, 0x11134 }, + { 0x11136, 0x1113f }, + { 0x11144, 0x11147 }, + { 0x11150, 0x11173 }, + { 0x11176, 0x11176 }, + { 0x11180, 0x111c4 }, + { 0x111c9, 0x111cc }, + { 0x111ce, 0x111da }, + { 0x111dc, 0x111dc }, + { 0x11200, 0x11211 }, + { 0x11213, 0x11237 }, + { 0x1123e, 0x11241 }, + { 0x11280, 0x11286 }, + { 0x11288, 0x11288 }, + { 0x1128a, 0x1128d }, + { 0x1128f, 0x1129d }, + { 0x1129f, 0x112a8 }, + { 0x112b0, 0x112ea }, + { 0x112f0, 0x112f9 }, + { 0x11300, 0x11303 }, + { 0x11305, 0x1130c }, + { 0x1130f, 0x11310 }, + { 0x11313, 0x11328 }, + { 0x1132a, 0x11330 }, + { 0x11332, 0x11333 }, + { 0x11335, 0x11339 }, + { 0x1133b, 0x11344 }, + { 0x11347, 0x11348 }, + { 0x1134b, 0x1134d }, + { 0x11350, 0x11350 }, + { 0x11357, 0x11357 }, + { 0x1135d, 0x11363 }, + { 0x11366, 0x1136c }, + { 0x11370, 0x11374 }, + { 0x11380, 0x11389 }, + { 0x1138b, 0x1138b }, + { 0x1138e, 0x1138e }, + { 0x11390, 0x113b5 }, + { 0x113b7, 0x113c0 }, + { 0x113c2, 0x113c2 }, + { 0x113c5, 0x113c5 }, + { 0x113c7, 0x113ca }, + { 0x113cc, 0x113d3 }, + { 0x113e1, 0x113e2 }, + { 0x11400, 0x1144a }, + { 0x11450, 0x11459 }, + { 0x1145e, 0x11461 }, + { 0x11480, 0x114c5 }, + { 0x114c7, 0x114c7 }, + { 0x114d0, 0x114d9 }, + { 0x11580, 0x115b5 }, + { 0x115b8, 0x115c0 }, + { 0x115d8, 0x115dd }, + { 0x11600, 0x11640 }, + { 0x11644, 0x11644 }, + { 0x11650, 0x11659 }, + { 0x11680, 0x116b8 }, + { 0x116c0, 0x116c9 }, + { 0x116d0, 0x116e3 }, + { 0x11700, 0x1171a }, + { 0x1171d, 0x1172b }, + { 0x11730, 0x11739 }, + { 0x11740, 0x11746 }, + { 0x11800, 0x1183a }, + { 0x118a0, 0x118e9 }, + { 0x118ff, 0x11906 }, + { 0x11909, 0x11909 }, + { 0x1190c, 0x11913 }, + { 0x11915, 0x11916 }, + { 0x11918, 0x11935 }, + { 0x11937, 0x11938 }, + { 0x1193b, 0x11943 }, + { 0x11950, 0x11959 }, + { 0x119a0, 0x119a7 }, + { 0x119aa, 0x119d7 }, + { 0x119da, 0x119e1 }, + { 0x119e3, 0x119e4 }, + { 0x11a00, 0x11a3e }, + { 0x11a47, 0x11a47 }, + { 0x11a50, 0x11a99 }, + { 0x11a9d, 0x11a9d }, + { 0x11ab0, 0x11af8 }, + { 0x11bc0, 0x11be0 }, + { 0x11bf0, 0x11bf9 }, + { 0x11c00, 0x11c08 }, + { 0x11c0a, 0x11c36 }, + { 0x11c38, 0x11c40 }, + { 0x11c50, 0x11c59 }, + { 0x11c72, 0x11c8f }, + { 0x11c92, 0x11ca7 }, + { 0x11ca9, 0x11cb6 }, + { 0x11d00, 0x11d06 }, + { 0x11d08, 0x11d09 }, + { 0x11d0b, 0x11d36 }, + { 0x11d3a, 0x11d3a }, + { 0x11d3c, 0x11d3d }, + { 0x11d3f, 0x11d47 }, + { 0x11d50, 0x11d59 }, + { 0x11d60, 0x11d65 }, + { 0x11d67, 0x11d68 }, + { 0x11d6a, 0x11d8e }, + { 0x11d90, 0x11d91 }, + { 0x11d93, 0x11d98 }, + { 0x11da0, 0x11da9 }, + { 0x11ee0, 0x11ef6 }, + { 0x11f00, 0x11f10 }, + { 0x11f12, 0x11f3a }, + { 0x11f3e, 0x11f42 }, + { 0x11f50, 0x11f5a }, + { 0x11fb0, 0x11fb0 }, + { 0x12000, 0x12399 }, + { 0x12400, 0x1246e }, + { 0x12480, 0x12543 }, + { 0x12f90, 0x12ff0 }, + { 0x13000, 0x1342f }, + { 0x13440, 0x13455 }, + { 0x13460, 0x143fa }, + { 0x14400, 0x14646 }, + { 0x16100, 0x16139 }, + { 0x16800, 0x16a38 }, + { 0x16a40, 0x16a5e }, + { 0x16a60, 0x16a69 }, + { 0x16a70, 0x16abe }, + { 0x16ac0, 0x16ac9 }, + { 0x16ad0, 0x16aed }, + { 0x16af0, 0x16af4 }, + { 0x16b00, 0x16b36 }, + { 0x16b40, 0x16b43 }, + { 0x16b50, 0x16b59 }, + { 0x16b63, 0x16b77 }, + { 0x16b7d, 0x16b8f }, + { 0x16d40, 0x16d6c }, + { 0x16d70, 0x16d79 }, + { 0x16e40, 0x16e7f }, + { 0x16f00, 0x16f4a }, + { 0x16f4f, 0x16f87 }, + { 0x16f8f, 0x16f9f }, + { 0x16fe0, 0x16fe1 }, + { 0x16fe3, 0x16fe4 }, + { 0x16ff0, 0x16ff1 }, + { 0x17000, 0x187f7 }, + { 0x18800, 0x18cd5 }, + { 0x18cff, 0x18d08 }, + { 0x1aff0, 0x1aff3 }, + { 0x1aff5, 0x1affb }, + { 0x1affd, 0x1affe }, + { 0x1b000, 0x1b122 }, + { 0x1b132, 0x1b132 }, + { 0x1b150, 0x1b152 }, + { 0x1b155, 0x1b155 }, + { 0x1b164, 0x1b167 }, + { 0x1b170, 0x1b2fb }, + { 0x1bc00, 0x1bc6a }, + { 0x1bc70, 0x1bc7c }, + { 0x1bc80, 0x1bc88 }, + { 0x1bc90, 0x1bc99 }, + { 0x1bc9d, 0x1bc9e }, + { 0x1ccf0, 0x1ccf9 }, + { 0x1cf00, 0x1cf2d }, + { 0x1cf30, 0x1cf46 }, + { 0x1d165, 0x1d169 }, + { 0x1d16d, 0x1d172 }, + { 0x1d17b, 0x1d182 }, + { 0x1d185, 0x1d18b }, + { 0x1d1aa, 0x1d1ad }, + { 0x1d242, 0x1d244 }, + { 0x1d400, 0x1d454 }, + { 0x1d456, 0x1d49c }, + { 0x1d49e, 0x1d49f }, + { 0x1d4a2, 0x1d4a2 }, + { 0x1d4a5, 0x1d4a6 }, + { 0x1d4a9, 0x1d4ac }, + { 0x1d4ae, 0x1d4b9 }, + { 0x1d4bb, 0x1d4bb }, + { 0x1d4bd, 0x1d4c3 }, + { 0x1d4c5, 0x1d505 }, + { 0x1d507, 0x1d50a }, + { 0x1d50d, 0x1d514 }, + { 0x1d516, 0x1d51c }, + { 0x1d51e, 0x1d539 }, + { 0x1d53b, 0x1d53e }, + { 0x1d540, 0x1d544 }, + { 0x1d546, 0x1d546 }, + { 0x1d54a, 0x1d550 }, + { 0x1d552, 0x1d6a5 }, + { 0x1d6a8, 0x1d6c0 }, + { 0x1d6c2, 0x1d6da }, + { 0x1d6dc, 0x1d6fa }, + { 0x1d6fc, 0x1d714 }, + { 0x1d716, 0x1d734 }, + { 0x1d736, 0x1d74e }, + { 0x1d750, 0x1d76e }, + { 0x1d770, 0x1d788 }, + { 0x1d78a, 0x1d7a8 }, + { 0x1d7aa, 0x1d7c2 }, + { 0x1d7c4, 0x1d7cb }, + { 0x1d7ce, 0x1d7ff }, + { 0x1da00, 0x1da36 }, + { 0x1da3b, 0x1da6c }, + { 0x1da75, 0x1da75 }, + { 0x1da84, 0x1da84 }, + { 0x1da9b, 0x1da9f }, + { 0x1daa1, 0x1daaf }, + { 0x1df00, 0x1df1e }, + { 0x1df25, 0x1df2a }, + { 0x1e000, 0x1e006 }, + { 0x1e008, 0x1e018 }, + { 0x1e01b, 0x1e021 }, + { 0x1e023, 0x1e024 }, + { 0x1e026, 0x1e02a }, + { 0x1e030, 0x1e06d }, + { 0x1e08f, 0x1e08f }, + { 0x1e100, 0x1e12c }, + { 0x1e130, 0x1e13d }, + { 0x1e140, 0x1e149 }, + { 0x1e14e, 0x1e14e }, + { 0x1e290, 0x1e2ae }, + { 0x1e2c0, 0x1e2f9 }, + { 0x1e4d0, 0x1e4f9 }, + { 0x1e5d0, 0x1e5fa }, + { 0x1e7e0, 0x1e7e6 }, + { 0x1e7e8, 0x1e7eb }, + { 0x1e7ed, 0x1e7ee }, + { 0x1e7f0, 0x1e7fe }, + { 0x1e800, 0x1e8c4 }, + { 0x1e8d0, 0x1e8d6 }, + { 0x1e900, 0x1e94b }, + { 0x1e950, 0x1e959 }, + { 0x1ee00, 0x1ee03 }, + { 0x1ee05, 0x1ee1f }, + { 0x1ee21, 0x1ee22 }, + { 0x1ee24, 0x1ee24 }, + { 0x1ee27, 0x1ee27 }, + { 0x1ee29, 0x1ee32 }, + { 0x1ee34, 0x1ee37 }, + { 0x1ee39, 0x1ee39 }, + { 0x1ee3b, 0x1ee3b }, + { 0x1ee42, 0x1ee42 }, + { 0x1ee47, 0x1ee47 }, + { 0x1ee49, 0x1ee49 }, + { 0x1ee4b, 0x1ee4b }, + { 0x1ee4d, 0x1ee4f }, + { 0x1ee51, 0x1ee52 }, + { 0x1ee54, 0x1ee54 }, + { 0x1ee57, 0x1ee57 }, + { 0x1ee59, 0x1ee59 }, + { 0x1ee5b, 0x1ee5b }, + { 0x1ee5d, 0x1ee5d }, + { 0x1ee5f, 0x1ee5f }, + { 0x1ee61, 0x1ee62 }, + { 0x1ee64, 0x1ee64 }, + { 0x1ee67, 0x1ee6a }, + { 0x1ee6c, 0x1ee72 }, + { 0x1ee74, 0x1ee77 }, + { 0x1ee79, 0x1ee7c }, + { 0x1ee7e, 0x1ee7e }, + { 0x1ee80, 0x1ee89 }, + { 0x1ee8b, 0x1ee9b }, + { 0x1eea1, 0x1eea3 }, + { 0x1eea5, 0x1eea9 }, + { 0x1eeab, 0x1eebb }, + { 0x1fbf0, 0x1fbf9 }, + { 0x20000, 0x2a6df }, + { 0x2a700, 0x2b739 }, + { 0x2b740, 0x2b81d }, + { 0x2b820, 0x2cea1 }, + { 0x2ceb0, 0x2ebe0 }, + { 0x2ebf0, 0x2ee5d }, + { 0x2f800, 0x2fa1d }, + { 0x30000, 0x3134a }, + { 0x31350, 0x323af }, + { 0xe0100, 0xe01ef }, +}; + +constexpr inline CharRange uppercase_letter[] = { + { 0x41, 0x5a }, + { 0xc0, 0xd6 }, + { 0xd8, 0xde }, + { 0x100, 0x100 }, + { 0x102, 0x102 }, + { 0x104, 0x104 }, + { 0x106, 0x106 }, + { 0x108, 0x108 }, + { 0x10a, 0x10a }, + { 0x10c, 0x10c }, + { 0x10e, 0x10e }, + { 0x110, 0x110 }, + { 0x112, 0x112 }, + { 0x114, 0x114 }, + { 0x116, 0x116 }, + { 0x118, 0x118 }, + { 0x11a, 0x11a }, + { 0x11c, 0x11c }, + { 0x11e, 0x11e }, + { 0x120, 0x120 }, + { 0x122, 0x122 }, + { 0x124, 0x124 }, + { 0x126, 0x126 }, + { 0x128, 0x128 }, + { 0x12a, 0x12a }, + { 0x12c, 0x12c }, + { 0x12e, 0x12e }, + { 0x130, 0x130 }, + { 0x132, 0x132 }, + { 0x134, 0x134 }, + { 0x136, 0x136 }, + { 0x139, 0x139 }, + { 0x13b, 0x13b }, + { 0x13d, 0x13d }, + { 0x13f, 0x13f }, + { 0x141, 0x141 }, + { 0x143, 0x143 }, + { 0x145, 0x145 }, + { 0x147, 0x147 }, + { 0x14a, 0x14a }, + { 0x14c, 0x14c }, + { 0x14e, 0x14e }, + { 0x150, 0x150 }, + { 0x152, 0x152 }, + { 0x154, 0x154 }, + { 0x156, 0x156 }, + { 0x158, 0x158 }, + { 0x15a, 0x15a }, + { 0x15c, 0x15c }, + { 0x15e, 0x15e }, + { 0x160, 0x160 }, + { 0x162, 0x162 }, + { 0x164, 0x164 }, + { 0x166, 0x166 }, + { 0x168, 0x168 }, + { 0x16a, 0x16a }, + { 0x16c, 0x16c }, + { 0x16e, 0x16e }, + { 0x170, 0x170 }, + { 0x172, 0x172 }, + { 0x174, 0x174 }, + { 0x176, 0x176 }, + { 0x178, 0x179 }, + { 0x17b, 0x17b }, + { 0x17d, 0x17d }, + { 0x181, 0x182 }, + { 0x184, 0x184 }, + { 0x186, 0x187 }, + { 0x189, 0x18b }, + { 0x18e, 0x191 }, + { 0x193, 0x194 }, + { 0x196, 0x198 }, + { 0x19c, 0x19d }, + { 0x19f, 0x1a0 }, + { 0x1a2, 0x1a2 }, + { 0x1a4, 0x1a4 }, + { 0x1a6, 0x1a7 }, + { 0x1a9, 0x1a9 }, + { 0x1ac, 0x1ac }, + { 0x1ae, 0x1af }, + { 0x1b1, 0x1b3 }, + { 0x1b5, 0x1b5 }, + { 0x1b7, 0x1b8 }, + { 0x1bc, 0x1bc }, + { 0x1c4, 0x1c4 }, + { 0x1c7, 0x1c7 }, + { 0x1ca, 0x1ca }, + { 0x1cd, 0x1cd }, + { 0x1cf, 0x1cf }, + { 0x1d1, 0x1d1 }, + { 0x1d3, 0x1d3 }, + { 0x1d5, 0x1d5 }, + { 0x1d7, 0x1d7 }, + { 0x1d9, 0x1d9 }, + { 0x1db, 0x1db }, + { 0x1de, 0x1de }, + { 0x1e0, 0x1e0 }, + { 0x1e2, 0x1e2 }, + { 0x1e4, 0x1e4 }, + { 0x1e6, 0x1e6 }, + { 0x1e8, 0x1e8 }, + { 0x1ea, 0x1ea }, + { 0x1ec, 0x1ec }, + { 0x1ee, 0x1ee }, + { 0x1f1, 0x1f1 }, + { 0x1f4, 0x1f4 }, + { 0x1f6, 0x1f8 }, + { 0x1fa, 0x1fa }, + { 0x1fc, 0x1fc }, + { 0x1fe, 0x1fe }, + { 0x200, 0x200 }, + { 0x202, 0x202 }, + { 0x204, 0x204 }, + { 0x206, 0x206 }, + { 0x208, 0x208 }, + { 0x20a, 0x20a }, + { 0x20c, 0x20c }, + { 0x20e, 0x20e }, + { 0x210, 0x210 }, + { 0x212, 0x212 }, + { 0x214, 0x214 }, + { 0x216, 0x216 }, + { 0x218, 0x218 }, + { 0x21a, 0x21a }, + { 0x21c, 0x21c }, + { 0x21e, 0x21e }, + { 0x220, 0x220 }, + { 0x222, 0x222 }, + { 0x224, 0x224 }, + { 0x226, 0x226 }, + { 0x228, 0x228 }, + { 0x22a, 0x22a }, + { 0x22c, 0x22c }, + { 0x22e, 0x22e }, + { 0x230, 0x230 }, + { 0x232, 0x232 }, + { 0x23a, 0x23b }, + { 0x23d, 0x23e }, + { 0x241, 0x241 }, + { 0x243, 0x246 }, + { 0x248, 0x248 }, + { 0x24a, 0x24a }, + { 0x24c, 0x24c }, + { 0x24e, 0x24e }, + { 0x370, 0x370 }, + { 0x372, 0x372 }, + { 0x376, 0x376 }, + { 0x37f, 0x37f }, + { 0x386, 0x386 }, + { 0x388, 0x38a }, + { 0x38c, 0x38c }, + { 0x38e, 0x38f }, + { 0x391, 0x3a1 }, + { 0x3a3, 0x3ab }, + { 0x3cf, 0x3cf }, + { 0x3d2, 0x3d4 }, + { 0x3d8, 0x3d8 }, + { 0x3da, 0x3da }, + { 0x3dc, 0x3dc }, + { 0x3de, 0x3de }, + { 0x3e0, 0x3e0 }, + { 0x3e2, 0x3e2 }, + { 0x3e4, 0x3e4 }, + { 0x3e6, 0x3e6 }, + { 0x3e8, 0x3e8 }, + { 0x3ea, 0x3ea }, + { 0x3ec, 0x3ec }, + { 0x3ee, 0x3ee }, + { 0x3f4, 0x3f4 }, + { 0x3f7, 0x3f7 }, + { 0x3f9, 0x3fa }, + { 0x3fd, 0x42f }, + { 0x460, 0x460 }, + { 0x462, 0x462 }, + { 0x464, 0x464 }, + { 0x466, 0x466 }, + { 0x468, 0x468 }, + { 0x46a, 0x46a }, + { 0x46c, 0x46c }, + { 0x46e, 0x46e }, + { 0x470, 0x470 }, + { 0x472, 0x472 }, + { 0x474, 0x474 }, + { 0x476, 0x476 }, + { 0x478, 0x478 }, + { 0x47a, 0x47a }, + { 0x47c, 0x47c }, + { 0x47e, 0x47e }, + { 0x480, 0x480 }, + { 0x48a, 0x48a }, + { 0x48c, 0x48c }, + { 0x48e, 0x48e }, + { 0x490, 0x490 }, + { 0x492, 0x492 }, + { 0x494, 0x494 }, + { 0x496, 0x496 }, + { 0x498, 0x498 }, + { 0x49a, 0x49a }, + { 0x49c, 0x49c }, + { 0x49e, 0x49e }, + { 0x4a0, 0x4a0 }, + { 0x4a2, 0x4a2 }, + { 0x4a4, 0x4a4 }, + { 0x4a6, 0x4a6 }, + { 0x4a8, 0x4a8 }, + { 0x4aa, 0x4aa }, + { 0x4ac, 0x4ac }, + { 0x4ae, 0x4ae }, + { 0x4b0, 0x4b0 }, + { 0x4b2, 0x4b2 }, + { 0x4b4, 0x4b4 }, + { 0x4b6, 0x4b6 }, + { 0x4b8, 0x4b8 }, + { 0x4ba, 0x4ba }, + { 0x4bc, 0x4bc }, + { 0x4be, 0x4be }, + { 0x4c0, 0x4c1 }, + { 0x4c3, 0x4c3 }, + { 0x4c5, 0x4c5 }, + { 0x4c7, 0x4c7 }, + { 0x4c9, 0x4c9 }, + { 0x4cb, 0x4cb }, + { 0x4cd, 0x4cd }, + { 0x4d0, 0x4d0 }, + { 0x4d2, 0x4d2 }, + { 0x4d4, 0x4d4 }, + { 0x4d6, 0x4d6 }, + { 0x4d8, 0x4d8 }, + { 0x4da, 0x4da }, + { 0x4dc, 0x4dc }, + { 0x4de, 0x4de }, + { 0x4e0, 0x4e0 }, + { 0x4e2, 0x4e2 }, + { 0x4e4, 0x4e4 }, + { 0x4e6, 0x4e6 }, + { 0x4e8, 0x4e8 }, + { 0x4ea, 0x4ea }, + { 0x4ec, 0x4ec }, + { 0x4ee, 0x4ee }, + { 0x4f0, 0x4f0 }, + { 0x4f2, 0x4f2 }, + { 0x4f4, 0x4f4 }, + { 0x4f6, 0x4f6 }, + { 0x4f8, 0x4f8 }, + { 0x4fa, 0x4fa }, + { 0x4fc, 0x4fc }, + { 0x4fe, 0x4fe }, + { 0x500, 0x500 }, + { 0x502, 0x502 }, + { 0x504, 0x504 }, + { 0x506, 0x506 }, + { 0x508, 0x508 }, + { 0x50a, 0x50a }, + { 0x50c, 0x50c }, + { 0x50e, 0x50e }, + { 0x510, 0x510 }, + { 0x512, 0x512 }, + { 0x514, 0x514 }, + { 0x516, 0x516 }, + { 0x518, 0x518 }, + { 0x51a, 0x51a }, + { 0x51c, 0x51c }, + { 0x51e, 0x51e }, + { 0x520, 0x520 }, + { 0x522, 0x522 }, + { 0x524, 0x524 }, + { 0x526, 0x526 }, + { 0x528, 0x528 }, + { 0x52a, 0x52a }, + { 0x52c, 0x52c }, + { 0x52e, 0x52e }, + { 0x531, 0x556 }, + { 0x10a0, 0x10c5 }, + { 0x10c7, 0x10c7 }, + { 0x10cd, 0x10cd }, + { 0x13a0, 0x13f5 }, + { 0x1c89, 0x1c89 }, + { 0x1c90, 0x1cba }, + { 0x1cbd, 0x1cbf }, + { 0x1e00, 0x1e00 }, + { 0x1e02, 0x1e02 }, + { 0x1e04, 0x1e04 }, + { 0x1e06, 0x1e06 }, + { 0x1e08, 0x1e08 }, + { 0x1e0a, 0x1e0a }, + { 0x1e0c, 0x1e0c }, + { 0x1e0e, 0x1e0e }, + { 0x1e10, 0x1e10 }, + { 0x1e12, 0x1e12 }, + { 0x1e14, 0x1e14 }, + { 0x1e16, 0x1e16 }, + { 0x1e18, 0x1e18 }, + { 0x1e1a, 0x1e1a }, + { 0x1e1c, 0x1e1c }, + { 0x1e1e, 0x1e1e }, + { 0x1e20, 0x1e20 }, + { 0x1e22, 0x1e22 }, + { 0x1e24, 0x1e24 }, + { 0x1e26, 0x1e26 }, + { 0x1e28, 0x1e28 }, + { 0x1e2a, 0x1e2a }, + { 0x1e2c, 0x1e2c }, + { 0x1e2e, 0x1e2e }, + { 0x1e30, 0x1e30 }, + { 0x1e32, 0x1e32 }, + { 0x1e34, 0x1e34 }, + { 0x1e36, 0x1e36 }, + { 0x1e38, 0x1e38 }, + { 0x1e3a, 0x1e3a }, + { 0x1e3c, 0x1e3c }, + { 0x1e3e, 0x1e3e }, + { 0x1e40, 0x1e40 }, + { 0x1e42, 0x1e42 }, + { 0x1e44, 0x1e44 }, + { 0x1e46, 0x1e46 }, + { 0x1e48, 0x1e48 }, + { 0x1e4a, 0x1e4a }, + { 0x1e4c, 0x1e4c }, + { 0x1e4e, 0x1e4e }, + { 0x1e50, 0x1e50 }, + { 0x1e52, 0x1e52 }, + { 0x1e54, 0x1e54 }, + { 0x1e56, 0x1e56 }, + { 0x1e58, 0x1e58 }, + { 0x1e5a, 0x1e5a }, + { 0x1e5c, 0x1e5c }, + { 0x1e5e, 0x1e5e }, + { 0x1e60, 0x1e60 }, + { 0x1e62, 0x1e62 }, + { 0x1e64, 0x1e64 }, + { 0x1e66, 0x1e66 }, + { 0x1e68, 0x1e68 }, + { 0x1e6a, 0x1e6a }, + { 0x1e6c, 0x1e6c }, + { 0x1e6e, 0x1e6e }, + { 0x1e70, 0x1e70 }, + { 0x1e72, 0x1e72 }, + { 0x1e74, 0x1e74 }, + { 0x1e76, 0x1e76 }, + { 0x1e78, 0x1e78 }, + { 0x1e7a, 0x1e7a }, + { 0x1e7c, 0x1e7c }, + { 0x1e7e, 0x1e7e }, + { 0x1e80, 0x1e80 }, + { 0x1e82, 0x1e82 }, + { 0x1e84, 0x1e84 }, + { 0x1e86, 0x1e86 }, + { 0x1e88, 0x1e88 }, + { 0x1e8a, 0x1e8a }, + { 0x1e8c, 0x1e8c }, + { 0x1e8e, 0x1e8e }, + { 0x1e90, 0x1e90 }, + { 0x1e92, 0x1e92 }, + { 0x1e94, 0x1e94 }, + { 0x1e9e, 0x1e9e }, + { 0x1ea0, 0x1ea0 }, + { 0x1ea2, 0x1ea2 }, + { 0x1ea4, 0x1ea4 }, + { 0x1ea6, 0x1ea6 }, + { 0x1ea8, 0x1ea8 }, + { 0x1eaa, 0x1eaa }, + { 0x1eac, 0x1eac }, + { 0x1eae, 0x1eae }, + { 0x1eb0, 0x1eb0 }, + { 0x1eb2, 0x1eb2 }, + { 0x1eb4, 0x1eb4 }, + { 0x1eb6, 0x1eb6 }, + { 0x1eb8, 0x1eb8 }, + { 0x1eba, 0x1eba }, + { 0x1ebc, 0x1ebc }, + { 0x1ebe, 0x1ebe }, + { 0x1ec0, 0x1ec0 }, + { 0x1ec2, 0x1ec2 }, + { 0x1ec4, 0x1ec4 }, + { 0x1ec6, 0x1ec6 }, + { 0x1ec8, 0x1ec8 }, + { 0x1eca, 0x1eca }, + { 0x1ecc, 0x1ecc }, + { 0x1ece, 0x1ece }, + { 0x1ed0, 0x1ed0 }, + { 0x1ed2, 0x1ed2 }, + { 0x1ed4, 0x1ed4 }, + { 0x1ed6, 0x1ed6 }, + { 0x1ed8, 0x1ed8 }, + { 0x1eda, 0x1eda }, + { 0x1edc, 0x1edc }, + { 0x1ede, 0x1ede }, + { 0x1ee0, 0x1ee0 }, + { 0x1ee2, 0x1ee2 }, + { 0x1ee4, 0x1ee4 }, + { 0x1ee6, 0x1ee6 }, + { 0x1ee8, 0x1ee8 }, + { 0x1eea, 0x1eea }, + { 0x1eec, 0x1eec }, + { 0x1eee, 0x1eee }, + { 0x1ef0, 0x1ef0 }, + { 0x1ef2, 0x1ef2 }, + { 0x1ef4, 0x1ef4 }, + { 0x1ef6, 0x1ef6 }, + { 0x1ef8, 0x1ef8 }, + { 0x1efa, 0x1efa }, + { 0x1efc, 0x1efc }, + { 0x1efe, 0x1efe }, + { 0x1f08, 0x1f0f }, + { 0x1f18, 0x1f1d }, + { 0x1f28, 0x1f2f }, + { 0x1f38, 0x1f3f }, + { 0x1f48, 0x1f4d }, + { 0x1f59, 0x1f59 }, + { 0x1f5b, 0x1f5b }, + { 0x1f5d, 0x1f5d }, + { 0x1f5f, 0x1f5f }, + { 0x1f68, 0x1f6f }, + { 0x1fb8, 0x1fbb }, + { 0x1fc8, 0x1fcb }, + { 0x1fd8, 0x1fdb }, + { 0x1fe8, 0x1fec }, + { 0x1ff8, 0x1ffb }, + { 0x2102, 0x2102 }, + { 0x2107, 0x2107 }, + { 0x210b, 0x210d }, + { 0x2110, 0x2112 }, + { 0x2115, 0x2115 }, + { 0x2119, 0x211d }, + { 0x2124, 0x2124 }, + { 0x2126, 0x2126 }, + { 0x2128, 0x2128 }, + { 0x212a, 0x212d }, + { 0x2130, 0x2133 }, + { 0x213e, 0x213f }, + { 0x2145, 0x2145 }, + { 0x2160, 0x216f }, + { 0x2183, 0x2183 }, + { 0x24b6, 0x24cf }, + { 0x2c00, 0x2c2f }, + { 0x2c60, 0x2c60 }, + { 0x2c62, 0x2c64 }, + { 0x2c67, 0x2c67 }, + { 0x2c69, 0x2c69 }, + { 0x2c6b, 0x2c6b }, + { 0x2c6d, 0x2c70 }, + { 0x2c72, 0x2c72 }, + { 0x2c75, 0x2c75 }, + { 0x2c7e, 0x2c80 }, + { 0x2c82, 0x2c82 }, + { 0x2c84, 0x2c84 }, + { 0x2c86, 0x2c86 }, + { 0x2c88, 0x2c88 }, + { 0x2c8a, 0x2c8a }, + { 0x2c8c, 0x2c8c }, + { 0x2c8e, 0x2c8e }, + { 0x2c90, 0x2c90 }, + { 0x2c92, 0x2c92 }, + { 0x2c94, 0x2c94 }, + { 0x2c96, 0x2c96 }, + { 0x2c98, 0x2c98 }, + { 0x2c9a, 0x2c9a }, + { 0x2c9c, 0x2c9c }, + { 0x2c9e, 0x2c9e }, + { 0x2ca0, 0x2ca0 }, + { 0x2ca2, 0x2ca2 }, + { 0x2ca4, 0x2ca4 }, + { 0x2ca6, 0x2ca6 }, + { 0x2ca8, 0x2ca8 }, + { 0x2caa, 0x2caa }, + { 0x2cac, 0x2cac }, + { 0x2cae, 0x2cae }, + { 0x2cb0, 0x2cb0 }, + { 0x2cb2, 0x2cb2 }, + { 0x2cb4, 0x2cb4 }, + { 0x2cb6, 0x2cb6 }, + { 0x2cb8, 0x2cb8 }, + { 0x2cba, 0x2cba }, + { 0x2cbc, 0x2cbc }, + { 0x2cbe, 0x2cbe }, + { 0x2cc0, 0x2cc0 }, + { 0x2cc2, 0x2cc2 }, + { 0x2cc4, 0x2cc4 }, + { 0x2cc6, 0x2cc6 }, + { 0x2cc8, 0x2cc8 }, + { 0x2cca, 0x2cca }, + { 0x2ccc, 0x2ccc }, + { 0x2cce, 0x2cce }, + { 0x2cd0, 0x2cd0 }, + { 0x2cd2, 0x2cd2 }, + { 0x2cd4, 0x2cd4 }, + { 0x2cd6, 0x2cd6 }, + { 0x2cd8, 0x2cd8 }, + { 0x2cda, 0x2cda }, + { 0x2cdc, 0x2cdc }, + { 0x2cde, 0x2cde }, + { 0x2ce0, 0x2ce0 }, + { 0x2ce2, 0x2ce2 }, + { 0x2ceb, 0x2ceb }, + { 0x2ced, 0x2ced }, + { 0x2cf2, 0x2cf2 }, + { 0xa640, 0xa640 }, + { 0xa642, 0xa642 }, + { 0xa644, 0xa644 }, + { 0xa646, 0xa646 }, + { 0xa648, 0xa648 }, + { 0xa64a, 0xa64a }, + { 0xa64c, 0xa64c }, + { 0xa64e, 0xa64e }, + { 0xa650, 0xa650 }, + { 0xa652, 0xa652 }, + { 0xa654, 0xa654 }, + { 0xa656, 0xa656 }, + { 0xa658, 0xa658 }, + { 0xa65a, 0xa65a }, + { 0xa65c, 0xa65c }, + { 0xa65e, 0xa65e }, + { 0xa660, 0xa660 }, + { 0xa662, 0xa662 }, + { 0xa664, 0xa664 }, + { 0xa666, 0xa666 }, + { 0xa668, 0xa668 }, + { 0xa66a, 0xa66a }, + { 0xa66c, 0xa66c }, + { 0xa680, 0xa680 }, + { 0xa682, 0xa682 }, + { 0xa684, 0xa684 }, + { 0xa686, 0xa686 }, + { 0xa688, 0xa688 }, + { 0xa68a, 0xa68a }, + { 0xa68c, 0xa68c }, + { 0xa68e, 0xa68e }, + { 0xa690, 0xa690 }, + { 0xa692, 0xa692 }, + { 0xa694, 0xa694 }, + { 0xa696, 0xa696 }, + { 0xa698, 0xa698 }, + { 0xa69a, 0xa69a }, + { 0xa722, 0xa722 }, + { 0xa724, 0xa724 }, + { 0xa726, 0xa726 }, + { 0xa728, 0xa728 }, + { 0xa72a, 0xa72a }, + { 0xa72c, 0xa72c }, + { 0xa72e, 0xa72e }, + { 0xa732, 0xa732 }, + { 0xa734, 0xa734 }, + { 0xa736, 0xa736 }, + { 0xa738, 0xa738 }, + { 0xa73a, 0xa73a }, + { 0xa73c, 0xa73c }, + { 0xa73e, 0xa73e }, + { 0xa740, 0xa740 }, + { 0xa742, 0xa742 }, + { 0xa744, 0xa744 }, + { 0xa746, 0xa746 }, + { 0xa748, 0xa748 }, + { 0xa74a, 0xa74a }, + { 0xa74c, 0xa74c }, + { 0xa74e, 0xa74e }, + { 0xa750, 0xa750 }, + { 0xa752, 0xa752 }, + { 0xa754, 0xa754 }, + { 0xa756, 0xa756 }, + { 0xa758, 0xa758 }, + { 0xa75a, 0xa75a }, + { 0xa75c, 0xa75c }, + { 0xa75e, 0xa75e }, + { 0xa760, 0xa760 }, + { 0xa762, 0xa762 }, + { 0xa764, 0xa764 }, + { 0xa766, 0xa766 }, + { 0xa768, 0xa768 }, + { 0xa76a, 0xa76a }, + { 0xa76c, 0xa76c }, + { 0xa76e, 0xa76e }, + { 0xa779, 0xa779 }, + { 0xa77b, 0xa77b }, + { 0xa77d, 0xa77e }, + { 0xa780, 0xa780 }, + { 0xa782, 0xa782 }, + { 0xa784, 0xa784 }, + { 0xa786, 0xa786 }, + { 0xa78b, 0xa78b }, + { 0xa78d, 0xa78d }, + { 0xa790, 0xa790 }, + { 0xa792, 0xa792 }, + { 0xa796, 0xa796 }, + { 0xa798, 0xa798 }, + { 0xa79a, 0xa79a }, + { 0xa79c, 0xa79c }, + { 0xa79e, 0xa79e }, + { 0xa7a0, 0xa7a0 }, + { 0xa7a2, 0xa7a2 }, + { 0xa7a4, 0xa7a4 }, + { 0xa7a6, 0xa7a6 }, + { 0xa7a8, 0xa7a8 }, + { 0xa7aa, 0xa7ae }, + { 0xa7b0, 0xa7b4 }, + { 0xa7b6, 0xa7b6 }, + { 0xa7b8, 0xa7b8 }, + { 0xa7ba, 0xa7ba }, + { 0xa7bc, 0xa7bc }, + { 0xa7be, 0xa7be }, + { 0xa7c0, 0xa7c0 }, + { 0xa7c2, 0xa7c2 }, + { 0xa7c4, 0xa7c7 }, + { 0xa7c9, 0xa7c9 }, + { 0xa7cb, 0xa7cc }, + { 0xa7d0, 0xa7d0 }, + { 0xa7d6, 0xa7d6 }, + { 0xa7d8, 0xa7d8 }, + { 0xa7da, 0xa7da }, + { 0xa7dc, 0xa7dc }, + { 0xa7f5, 0xa7f5 }, + { 0xff21, 0xff3a }, + { 0x10400, 0x10427 }, + { 0x104b0, 0x104d3 }, + { 0x10570, 0x1057a }, + { 0x1057c, 0x1058a }, + { 0x1058c, 0x10592 }, + { 0x10594, 0x10595 }, + { 0x10c80, 0x10cb2 }, + { 0x10d50, 0x10d65 }, + { 0x118a0, 0x118bf }, + { 0x16e40, 0x16e5f }, + { 0x1d400, 0x1d419 }, + { 0x1d434, 0x1d44d }, + { 0x1d468, 0x1d481 }, + { 0x1d49c, 0x1d49c }, + { 0x1d49e, 0x1d49f }, + { 0x1d4a2, 0x1d4a2 }, + { 0x1d4a5, 0x1d4a6 }, + { 0x1d4a9, 0x1d4ac }, + { 0x1d4ae, 0x1d4b5 }, + { 0x1d4d0, 0x1d4e9 }, + { 0x1d504, 0x1d505 }, + { 0x1d507, 0x1d50a }, + { 0x1d50d, 0x1d514 }, + { 0x1d516, 0x1d51c }, + { 0x1d538, 0x1d539 }, + { 0x1d53b, 0x1d53e }, + { 0x1d540, 0x1d544 }, + { 0x1d546, 0x1d546 }, + { 0x1d54a, 0x1d550 }, + { 0x1d56c, 0x1d585 }, + { 0x1d5a0, 0x1d5b9 }, + { 0x1d5d4, 0x1d5ed }, + { 0x1d608, 0x1d621 }, + { 0x1d63c, 0x1d655 }, + { 0x1d670, 0x1d689 }, + { 0x1d6a8, 0x1d6c0 }, + { 0x1d6e2, 0x1d6fa }, + { 0x1d71c, 0x1d734 }, + { 0x1d756, 0x1d76e }, + { 0x1d790, 0x1d7a8 }, + { 0x1d7ca, 0x1d7ca }, + { 0x1e900, 0x1e921 }, + { 0x1f130, 0x1f149 }, + { 0x1f150, 0x1f169 }, + { 0x1f170, 0x1f189 }, +}; + +constexpr inline CharRange lowercase_letter[] = { + { 0x61, 0x7a }, + { 0xaa, 0xaa }, + { 0xb5, 0xb5 }, + { 0xba, 0xba }, + { 0xdf, 0xf6 }, + { 0xf8, 0xff }, + { 0x101, 0x101 }, + { 0x103, 0x103 }, + { 0x105, 0x105 }, + { 0x107, 0x107 }, + { 0x109, 0x109 }, + { 0x10b, 0x10b }, + { 0x10d, 0x10d }, + { 0x10f, 0x10f }, + { 0x111, 0x111 }, + { 0x113, 0x113 }, + { 0x115, 0x115 }, + { 0x117, 0x117 }, + { 0x119, 0x119 }, + { 0x11b, 0x11b }, + { 0x11d, 0x11d }, + { 0x11f, 0x11f }, + { 0x121, 0x121 }, + { 0x123, 0x123 }, + { 0x125, 0x125 }, + { 0x127, 0x127 }, + { 0x129, 0x129 }, + { 0x12b, 0x12b }, + { 0x12d, 0x12d }, + { 0x12f, 0x12f }, + { 0x131, 0x131 }, + { 0x133, 0x133 }, + { 0x135, 0x135 }, + { 0x137, 0x138 }, + { 0x13a, 0x13a }, + { 0x13c, 0x13c }, + { 0x13e, 0x13e }, + { 0x140, 0x140 }, + { 0x142, 0x142 }, + { 0x144, 0x144 }, + { 0x146, 0x146 }, + { 0x148, 0x149 }, + { 0x14b, 0x14b }, + { 0x14d, 0x14d }, + { 0x14f, 0x14f }, + { 0x151, 0x151 }, + { 0x153, 0x153 }, + { 0x155, 0x155 }, + { 0x157, 0x157 }, + { 0x159, 0x159 }, + { 0x15b, 0x15b }, + { 0x15d, 0x15d }, + { 0x15f, 0x15f }, + { 0x161, 0x161 }, + { 0x163, 0x163 }, + { 0x165, 0x165 }, + { 0x167, 0x167 }, + { 0x169, 0x169 }, + { 0x16b, 0x16b }, + { 0x16d, 0x16d }, + { 0x16f, 0x16f }, + { 0x171, 0x171 }, + { 0x173, 0x173 }, + { 0x175, 0x175 }, + { 0x177, 0x177 }, + { 0x17a, 0x17a }, + { 0x17c, 0x17c }, + { 0x17e, 0x180 }, + { 0x183, 0x183 }, + { 0x185, 0x185 }, + { 0x188, 0x188 }, + { 0x18c, 0x18d }, + { 0x192, 0x192 }, + { 0x195, 0x195 }, + { 0x199, 0x19b }, + { 0x19e, 0x19e }, + { 0x1a1, 0x1a1 }, + { 0x1a3, 0x1a3 }, + { 0x1a5, 0x1a5 }, + { 0x1a8, 0x1a8 }, + { 0x1aa, 0x1ab }, + { 0x1ad, 0x1ad }, + { 0x1b0, 0x1b0 }, + { 0x1b4, 0x1b4 }, + { 0x1b6, 0x1b6 }, + { 0x1b9, 0x1ba }, + { 0x1bd, 0x1bf }, + { 0x1c6, 0x1c6 }, + { 0x1c9, 0x1c9 }, + { 0x1cc, 0x1cc }, + { 0x1ce, 0x1ce }, + { 0x1d0, 0x1d0 }, + { 0x1d2, 0x1d2 }, + { 0x1d4, 0x1d4 }, + { 0x1d6, 0x1d6 }, + { 0x1d8, 0x1d8 }, + { 0x1da, 0x1da }, + { 0x1dc, 0x1dd }, + { 0x1df, 0x1df }, + { 0x1e1, 0x1e1 }, + { 0x1e3, 0x1e3 }, + { 0x1e5, 0x1e5 }, + { 0x1e7, 0x1e7 }, + { 0x1e9, 0x1e9 }, + { 0x1eb, 0x1eb }, + { 0x1ed, 0x1ed }, + { 0x1ef, 0x1f0 }, + { 0x1f3, 0x1f3 }, + { 0x1f5, 0x1f5 }, + { 0x1f9, 0x1f9 }, + { 0x1fb, 0x1fb }, + { 0x1fd, 0x1fd }, + { 0x1ff, 0x1ff }, + { 0x201, 0x201 }, + { 0x203, 0x203 }, + { 0x205, 0x205 }, + { 0x207, 0x207 }, + { 0x209, 0x209 }, + { 0x20b, 0x20b }, + { 0x20d, 0x20d }, + { 0x20f, 0x20f }, + { 0x211, 0x211 }, + { 0x213, 0x213 }, + { 0x215, 0x215 }, + { 0x217, 0x217 }, + { 0x219, 0x219 }, + { 0x21b, 0x21b }, + { 0x21d, 0x21d }, + { 0x21f, 0x21f }, + { 0x221, 0x221 }, + { 0x223, 0x223 }, + { 0x225, 0x225 }, + { 0x227, 0x227 }, + { 0x229, 0x229 }, + { 0x22b, 0x22b }, + { 0x22d, 0x22d }, + { 0x22f, 0x22f }, + { 0x231, 0x231 }, + { 0x233, 0x239 }, + { 0x23c, 0x23c }, + { 0x23f, 0x240 }, + { 0x242, 0x242 }, + { 0x247, 0x247 }, + { 0x249, 0x249 }, + { 0x24b, 0x24b }, + { 0x24d, 0x24d }, + { 0x24f, 0x293 }, + { 0x295, 0x2b8 }, + { 0x2c0, 0x2c1 }, + { 0x2e0, 0x2e4 }, + { 0x345, 0x345 }, + { 0x371, 0x371 }, + { 0x373, 0x373 }, + { 0x377, 0x377 }, + { 0x37a, 0x37d }, + { 0x390, 0x390 }, + { 0x3ac, 0x3ce }, + { 0x3d0, 0x3d1 }, + { 0x3d5, 0x3d7 }, + { 0x3d9, 0x3d9 }, + { 0x3db, 0x3db }, + { 0x3dd, 0x3dd }, + { 0x3df, 0x3df }, + { 0x3e1, 0x3e1 }, + { 0x3e3, 0x3e3 }, + { 0x3e5, 0x3e5 }, + { 0x3e7, 0x3e7 }, + { 0x3e9, 0x3e9 }, + { 0x3eb, 0x3eb }, + { 0x3ed, 0x3ed }, + { 0x3ef, 0x3f3 }, + { 0x3f5, 0x3f5 }, + { 0x3f8, 0x3f8 }, + { 0x3fb, 0x3fc }, + { 0x430, 0x45f }, + { 0x461, 0x461 }, + { 0x463, 0x463 }, + { 0x465, 0x465 }, + { 0x467, 0x467 }, + { 0x469, 0x469 }, + { 0x46b, 0x46b }, + { 0x46d, 0x46d }, + { 0x46f, 0x46f }, + { 0x471, 0x471 }, + { 0x473, 0x473 }, + { 0x475, 0x475 }, + { 0x477, 0x477 }, + { 0x479, 0x479 }, + { 0x47b, 0x47b }, + { 0x47d, 0x47d }, + { 0x47f, 0x47f }, + { 0x481, 0x481 }, + { 0x48b, 0x48b }, + { 0x48d, 0x48d }, + { 0x48f, 0x48f }, + { 0x491, 0x491 }, + { 0x493, 0x493 }, + { 0x495, 0x495 }, + { 0x497, 0x497 }, + { 0x499, 0x499 }, + { 0x49b, 0x49b }, + { 0x49d, 0x49d }, + { 0x49f, 0x49f }, + { 0x4a1, 0x4a1 }, + { 0x4a3, 0x4a3 }, + { 0x4a5, 0x4a5 }, + { 0x4a7, 0x4a7 }, + { 0x4a9, 0x4a9 }, + { 0x4ab, 0x4ab }, + { 0x4ad, 0x4ad }, + { 0x4af, 0x4af }, + { 0x4b1, 0x4b1 }, + { 0x4b3, 0x4b3 }, + { 0x4b5, 0x4b5 }, + { 0x4b7, 0x4b7 }, + { 0x4b9, 0x4b9 }, + { 0x4bb, 0x4bb }, + { 0x4bd, 0x4bd }, + { 0x4bf, 0x4bf }, + { 0x4c2, 0x4c2 }, + { 0x4c4, 0x4c4 }, + { 0x4c6, 0x4c6 }, + { 0x4c8, 0x4c8 }, + { 0x4ca, 0x4ca }, + { 0x4cc, 0x4cc }, + { 0x4ce, 0x4cf }, + { 0x4d1, 0x4d1 }, + { 0x4d3, 0x4d3 }, + { 0x4d5, 0x4d5 }, + { 0x4d7, 0x4d7 }, + { 0x4d9, 0x4d9 }, + { 0x4db, 0x4db }, + { 0x4dd, 0x4dd }, + { 0x4df, 0x4df }, + { 0x4e1, 0x4e1 }, + { 0x4e3, 0x4e3 }, + { 0x4e5, 0x4e5 }, + { 0x4e7, 0x4e7 }, + { 0x4e9, 0x4e9 }, + { 0x4eb, 0x4eb }, + { 0x4ed, 0x4ed }, + { 0x4ef, 0x4ef }, + { 0x4f1, 0x4f1 }, + { 0x4f3, 0x4f3 }, + { 0x4f5, 0x4f5 }, + { 0x4f7, 0x4f7 }, + { 0x4f9, 0x4f9 }, + { 0x4fb, 0x4fb }, + { 0x4fd, 0x4fd }, + { 0x4ff, 0x4ff }, + { 0x501, 0x501 }, + { 0x503, 0x503 }, + { 0x505, 0x505 }, + { 0x507, 0x507 }, + { 0x509, 0x509 }, + { 0x50b, 0x50b }, + { 0x50d, 0x50d }, + { 0x50f, 0x50f }, + { 0x511, 0x511 }, + { 0x513, 0x513 }, + { 0x515, 0x515 }, + { 0x517, 0x517 }, + { 0x519, 0x519 }, + { 0x51b, 0x51b }, + { 0x51d, 0x51d }, + { 0x51f, 0x51f }, + { 0x521, 0x521 }, + { 0x523, 0x523 }, + { 0x525, 0x525 }, + { 0x527, 0x527 }, + { 0x529, 0x529 }, + { 0x52b, 0x52b }, + { 0x52d, 0x52d }, + { 0x52f, 0x52f }, + { 0x560, 0x588 }, + { 0x10d0, 0x10fa }, + { 0x10fc, 0x10ff }, + { 0x13f8, 0x13fd }, + { 0x1c80, 0x1c88 }, + { 0x1c8a, 0x1c8a }, + { 0x1d00, 0x1dbf }, + { 0x1e01, 0x1e01 }, + { 0x1e03, 0x1e03 }, + { 0x1e05, 0x1e05 }, + { 0x1e07, 0x1e07 }, + { 0x1e09, 0x1e09 }, + { 0x1e0b, 0x1e0b }, + { 0x1e0d, 0x1e0d }, + { 0x1e0f, 0x1e0f }, + { 0x1e11, 0x1e11 }, + { 0x1e13, 0x1e13 }, + { 0x1e15, 0x1e15 }, + { 0x1e17, 0x1e17 }, + { 0x1e19, 0x1e19 }, + { 0x1e1b, 0x1e1b }, + { 0x1e1d, 0x1e1d }, + { 0x1e1f, 0x1e1f }, + { 0x1e21, 0x1e21 }, + { 0x1e23, 0x1e23 }, + { 0x1e25, 0x1e25 }, + { 0x1e27, 0x1e27 }, + { 0x1e29, 0x1e29 }, + { 0x1e2b, 0x1e2b }, + { 0x1e2d, 0x1e2d }, + { 0x1e2f, 0x1e2f }, + { 0x1e31, 0x1e31 }, + { 0x1e33, 0x1e33 }, + { 0x1e35, 0x1e35 }, + { 0x1e37, 0x1e37 }, + { 0x1e39, 0x1e39 }, + { 0x1e3b, 0x1e3b }, + { 0x1e3d, 0x1e3d }, + { 0x1e3f, 0x1e3f }, + { 0x1e41, 0x1e41 }, + { 0x1e43, 0x1e43 }, + { 0x1e45, 0x1e45 }, + { 0x1e47, 0x1e47 }, + { 0x1e49, 0x1e49 }, + { 0x1e4b, 0x1e4b }, + { 0x1e4d, 0x1e4d }, + { 0x1e4f, 0x1e4f }, + { 0x1e51, 0x1e51 }, + { 0x1e53, 0x1e53 }, + { 0x1e55, 0x1e55 }, + { 0x1e57, 0x1e57 }, + { 0x1e59, 0x1e59 }, + { 0x1e5b, 0x1e5b }, + { 0x1e5d, 0x1e5d }, + { 0x1e5f, 0x1e5f }, + { 0x1e61, 0x1e61 }, + { 0x1e63, 0x1e63 }, + { 0x1e65, 0x1e65 }, + { 0x1e67, 0x1e67 }, + { 0x1e69, 0x1e69 }, + { 0x1e6b, 0x1e6b }, + { 0x1e6d, 0x1e6d }, + { 0x1e6f, 0x1e6f }, + { 0x1e71, 0x1e71 }, + { 0x1e73, 0x1e73 }, + { 0x1e75, 0x1e75 }, + { 0x1e77, 0x1e77 }, + { 0x1e79, 0x1e79 }, + { 0x1e7b, 0x1e7b }, + { 0x1e7d, 0x1e7d }, + { 0x1e7f, 0x1e7f }, + { 0x1e81, 0x1e81 }, + { 0x1e83, 0x1e83 }, + { 0x1e85, 0x1e85 }, + { 0x1e87, 0x1e87 }, + { 0x1e89, 0x1e89 }, + { 0x1e8b, 0x1e8b }, + { 0x1e8d, 0x1e8d }, + { 0x1e8f, 0x1e8f }, + { 0x1e91, 0x1e91 }, + { 0x1e93, 0x1e93 }, + { 0x1e95, 0x1e9d }, + { 0x1e9f, 0x1e9f }, + { 0x1ea1, 0x1ea1 }, + { 0x1ea3, 0x1ea3 }, + { 0x1ea5, 0x1ea5 }, + { 0x1ea7, 0x1ea7 }, + { 0x1ea9, 0x1ea9 }, + { 0x1eab, 0x1eab }, + { 0x1ead, 0x1ead }, + { 0x1eaf, 0x1eaf }, + { 0x1eb1, 0x1eb1 }, + { 0x1eb3, 0x1eb3 }, + { 0x1eb5, 0x1eb5 }, + { 0x1eb7, 0x1eb7 }, + { 0x1eb9, 0x1eb9 }, + { 0x1ebb, 0x1ebb }, + { 0x1ebd, 0x1ebd }, + { 0x1ebf, 0x1ebf }, + { 0x1ec1, 0x1ec1 }, + { 0x1ec3, 0x1ec3 }, + { 0x1ec5, 0x1ec5 }, + { 0x1ec7, 0x1ec7 }, + { 0x1ec9, 0x1ec9 }, + { 0x1ecb, 0x1ecb }, + { 0x1ecd, 0x1ecd }, + { 0x1ecf, 0x1ecf }, + { 0x1ed1, 0x1ed1 }, + { 0x1ed3, 0x1ed3 }, + { 0x1ed5, 0x1ed5 }, + { 0x1ed7, 0x1ed7 }, + { 0x1ed9, 0x1ed9 }, + { 0x1edb, 0x1edb }, + { 0x1edd, 0x1edd }, + { 0x1edf, 0x1edf }, + { 0x1ee1, 0x1ee1 }, + { 0x1ee3, 0x1ee3 }, + { 0x1ee5, 0x1ee5 }, + { 0x1ee7, 0x1ee7 }, + { 0x1ee9, 0x1ee9 }, + { 0x1eeb, 0x1eeb }, + { 0x1eed, 0x1eed }, + { 0x1eef, 0x1eef }, + { 0x1ef1, 0x1ef1 }, + { 0x1ef3, 0x1ef3 }, + { 0x1ef5, 0x1ef5 }, + { 0x1ef7, 0x1ef7 }, + { 0x1ef9, 0x1ef9 }, + { 0x1efb, 0x1efb }, + { 0x1efd, 0x1efd }, + { 0x1eff, 0x1f07 }, + { 0x1f10, 0x1f15 }, + { 0x1f20, 0x1f27 }, + { 0x1f30, 0x1f37 }, + { 0x1f40, 0x1f45 }, + { 0x1f50, 0x1f57 }, + { 0x1f60, 0x1f67 }, + { 0x1f70, 0x1f7d }, + { 0x1f80, 0x1f87 }, + { 0x1f90, 0x1f97 }, + { 0x1fa0, 0x1fa7 }, + { 0x1fb0, 0x1fb4 }, + { 0x1fb6, 0x1fb7 }, + { 0x1fbe, 0x1fbe }, + { 0x1fc2, 0x1fc4 }, + { 0x1fc6, 0x1fc7 }, + { 0x1fd0, 0x1fd3 }, + { 0x1fd6, 0x1fd7 }, + { 0x1fe0, 0x1fe7 }, + { 0x1ff2, 0x1ff4 }, + { 0x1ff6, 0x1ff7 }, + { 0x2071, 0x2071 }, + { 0x207f, 0x207f }, + { 0x2090, 0x209c }, + { 0x210a, 0x210a }, + { 0x210e, 0x210f }, + { 0x2113, 0x2113 }, + { 0x212f, 0x212f }, + { 0x2134, 0x2134 }, + { 0x2139, 0x2139 }, + { 0x213c, 0x213d }, + { 0x2146, 0x2149 }, + { 0x214e, 0x214e }, + { 0x2170, 0x217f }, + { 0x2184, 0x2184 }, + { 0x24d0, 0x24e9 }, + { 0x2c30, 0x2c5f }, + { 0x2c61, 0x2c61 }, + { 0x2c65, 0x2c66 }, + { 0x2c68, 0x2c68 }, + { 0x2c6a, 0x2c6a }, + { 0x2c6c, 0x2c6c }, + { 0x2c71, 0x2c71 }, + { 0x2c73, 0x2c74 }, + { 0x2c76, 0x2c7d }, + { 0x2c81, 0x2c81 }, + { 0x2c83, 0x2c83 }, + { 0x2c85, 0x2c85 }, + { 0x2c87, 0x2c87 }, + { 0x2c89, 0x2c89 }, + { 0x2c8b, 0x2c8b }, + { 0x2c8d, 0x2c8d }, + { 0x2c8f, 0x2c8f }, + { 0x2c91, 0x2c91 }, + { 0x2c93, 0x2c93 }, + { 0x2c95, 0x2c95 }, + { 0x2c97, 0x2c97 }, + { 0x2c99, 0x2c99 }, + { 0x2c9b, 0x2c9b }, + { 0x2c9d, 0x2c9d }, + { 0x2c9f, 0x2c9f }, + { 0x2ca1, 0x2ca1 }, + { 0x2ca3, 0x2ca3 }, + { 0x2ca5, 0x2ca5 }, + { 0x2ca7, 0x2ca7 }, + { 0x2ca9, 0x2ca9 }, + { 0x2cab, 0x2cab }, + { 0x2cad, 0x2cad }, + { 0x2caf, 0x2caf }, + { 0x2cb1, 0x2cb1 }, + { 0x2cb3, 0x2cb3 }, + { 0x2cb5, 0x2cb5 }, + { 0x2cb7, 0x2cb7 }, + { 0x2cb9, 0x2cb9 }, + { 0x2cbb, 0x2cbb }, + { 0x2cbd, 0x2cbd }, + { 0x2cbf, 0x2cbf }, + { 0x2cc1, 0x2cc1 }, + { 0x2cc3, 0x2cc3 }, + { 0x2cc5, 0x2cc5 }, + { 0x2cc7, 0x2cc7 }, + { 0x2cc9, 0x2cc9 }, + { 0x2ccb, 0x2ccb }, + { 0x2ccd, 0x2ccd }, + { 0x2ccf, 0x2ccf }, + { 0x2cd1, 0x2cd1 }, + { 0x2cd3, 0x2cd3 }, + { 0x2cd5, 0x2cd5 }, + { 0x2cd7, 0x2cd7 }, + { 0x2cd9, 0x2cd9 }, + { 0x2cdb, 0x2cdb }, + { 0x2cdd, 0x2cdd }, + { 0x2cdf, 0x2cdf }, + { 0x2ce1, 0x2ce1 }, + { 0x2ce3, 0x2ce4 }, + { 0x2cec, 0x2cec }, + { 0x2cee, 0x2cee }, + { 0x2cf3, 0x2cf3 }, + { 0x2d00, 0x2d25 }, + { 0x2d27, 0x2d27 }, + { 0x2d2d, 0x2d2d }, + { 0xa641, 0xa641 }, + { 0xa643, 0xa643 }, + { 0xa645, 0xa645 }, + { 0xa647, 0xa647 }, + { 0xa649, 0xa649 }, + { 0xa64b, 0xa64b }, + { 0xa64d, 0xa64d }, + { 0xa64f, 0xa64f }, + { 0xa651, 0xa651 }, + { 0xa653, 0xa653 }, + { 0xa655, 0xa655 }, + { 0xa657, 0xa657 }, + { 0xa659, 0xa659 }, + { 0xa65b, 0xa65b }, + { 0xa65d, 0xa65d }, + { 0xa65f, 0xa65f }, + { 0xa661, 0xa661 }, + { 0xa663, 0xa663 }, + { 0xa665, 0xa665 }, + { 0xa667, 0xa667 }, + { 0xa669, 0xa669 }, + { 0xa66b, 0xa66b }, + { 0xa66d, 0xa66d }, + { 0xa681, 0xa681 }, + { 0xa683, 0xa683 }, + { 0xa685, 0xa685 }, + { 0xa687, 0xa687 }, + { 0xa689, 0xa689 }, + { 0xa68b, 0xa68b }, + { 0xa68d, 0xa68d }, + { 0xa68f, 0xa68f }, + { 0xa691, 0xa691 }, + { 0xa693, 0xa693 }, + { 0xa695, 0xa695 }, + { 0xa697, 0xa697 }, + { 0xa699, 0xa699 }, + { 0xa69b, 0xa69d }, + { 0xa723, 0xa723 }, + { 0xa725, 0xa725 }, + { 0xa727, 0xa727 }, + { 0xa729, 0xa729 }, + { 0xa72b, 0xa72b }, + { 0xa72d, 0xa72d }, + { 0xa72f, 0xa731 }, + { 0xa733, 0xa733 }, + { 0xa735, 0xa735 }, + { 0xa737, 0xa737 }, + { 0xa739, 0xa739 }, + { 0xa73b, 0xa73b }, + { 0xa73d, 0xa73d }, + { 0xa73f, 0xa73f }, + { 0xa741, 0xa741 }, + { 0xa743, 0xa743 }, + { 0xa745, 0xa745 }, + { 0xa747, 0xa747 }, + { 0xa749, 0xa749 }, + { 0xa74b, 0xa74b }, + { 0xa74d, 0xa74d }, + { 0xa74f, 0xa74f }, + { 0xa751, 0xa751 }, + { 0xa753, 0xa753 }, + { 0xa755, 0xa755 }, + { 0xa757, 0xa757 }, + { 0xa759, 0xa759 }, + { 0xa75b, 0xa75b }, + { 0xa75d, 0xa75d }, + { 0xa75f, 0xa75f }, + { 0xa761, 0xa761 }, + { 0xa763, 0xa763 }, + { 0xa765, 0xa765 }, + { 0xa767, 0xa767 }, + { 0xa769, 0xa769 }, + { 0xa76b, 0xa76b }, + { 0xa76d, 0xa76d }, + { 0xa76f, 0xa778 }, + { 0xa77a, 0xa77a }, + { 0xa77c, 0xa77c }, + { 0xa77f, 0xa77f }, + { 0xa781, 0xa781 }, + { 0xa783, 0xa783 }, + { 0xa785, 0xa785 }, + { 0xa787, 0xa787 }, + { 0xa78c, 0xa78c }, + { 0xa78e, 0xa78e }, + { 0xa791, 0xa791 }, + { 0xa793, 0xa795 }, + { 0xa797, 0xa797 }, + { 0xa799, 0xa799 }, + { 0xa79b, 0xa79b }, + { 0xa79d, 0xa79d }, + { 0xa79f, 0xa79f }, + { 0xa7a1, 0xa7a1 }, + { 0xa7a3, 0xa7a3 }, + { 0xa7a5, 0xa7a5 }, + { 0xa7a7, 0xa7a7 }, + { 0xa7a9, 0xa7a9 }, + { 0xa7af, 0xa7af }, + { 0xa7b5, 0xa7b5 }, + { 0xa7b7, 0xa7b7 }, + { 0xa7b9, 0xa7b9 }, + { 0xa7bb, 0xa7bb }, + { 0xa7bd, 0xa7bd }, + { 0xa7bf, 0xa7bf }, + { 0xa7c1, 0xa7c1 }, + { 0xa7c3, 0xa7c3 }, + { 0xa7c8, 0xa7c8 }, + { 0xa7ca, 0xa7ca }, + { 0xa7cd, 0xa7cd }, + { 0xa7d1, 0xa7d1 }, + { 0xa7d3, 0xa7d3 }, + { 0xa7d5, 0xa7d5 }, + { 0xa7d7, 0xa7d7 }, + { 0xa7d9, 0xa7d9 }, + { 0xa7db, 0xa7db }, + { 0xa7f2, 0xa7f4 }, + { 0xa7f6, 0xa7f6 }, + { 0xa7f8, 0xa7fa }, + { 0xab30, 0xab5a }, + { 0xab5c, 0xab69 }, + { 0xab70, 0xabbf }, + { 0xfb00, 0xfb06 }, + { 0xfb13, 0xfb17 }, + { 0xff41, 0xff5a }, + { 0x10428, 0x1044f }, + { 0x104d8, 0x104fb }, + { 0x10597, 0x105a1 }, + { 0x105a3, 0x105b1 }, + { 0x105b3, 0x105b9 }, + { 0x105bb, 0x105bc }, + { 0x10780, 0x10780 }, + { 0x10783, 0x10785 }, + { 0x10787, 0x107b0 }, + { 0x107b2, 0x107ba }, + { 0x10cc0, 0x10cf2 }, + { 0x10d70, 0x10d85 }, + { 0x118c0, 0x118df }, + { 0x16e60, 0x16e7f }, + { 0x1d41a, 0x1d433 }, + { 0x1d44e, 0x1d454 }, + { 0x1d456, 0x1d467 }, + { 0x1d482, 0x1d49b }, + { 0x1d4b6, 0x1d4b9 }, + { 0x1d4bb, 0x1d4bb }, + { 0x1d4bd, 0x1d4c3 }, + { 0x1d4c5, 0x1d4cf }, + { 0x1d4ea, 0x1d503 }, + { 0x1d51e, 0x1d537 }, + { 0x1d552, 0x1d56b }, + { 0x1d586, 0x1d59f }, + { 0x1d5ba, 0x1d5d3 }, + { 0x1d5ee, 0x1d607 }, + { 0x1d622, 0x1d63b }, + { 0x1d656, 0x1d66f }, + { 0x1d68a, 0x1d6a5 }, + { 0x1d6c2, 0x1d6da }, + { 0x1d6dc, 0x1d6e1 }, + { 0x1d6fc, 0x1d714 }, + { 0x1d716, 0x1d71b }, + { 0x1d736, 0x1d74e }, + { 0x1d750, 0x1d755 }, + { 0x1d770, 0x1d788 }, + { 0x1d78a, 0x1d78f }, + { 0x1d7aa, 0x1d7c2 }, + { 0x1d7c4, 0x1d7c9 }, + { 0x1d7cb, 0x1d7cb }, + { 0x1df00, 0x1df09 }, + { 0x1df0b, 0x1df1e }, + { 0x1df25, 0x1df2a }, + { 0x1e030, 0x1e06d }, + { 0x1e922, 0x1e943 }, +}; + +constexpr inline CharRange unicode_letter[] = { + { 0x41, 0x5a }, + { 0x61, 0x7a }, + { 0xaa, 0xaa }, + { 0xb5, 0xb5 }, + { 0xba, 0xba }, + { 0xc0, 0xd6 }, + { 0xd8, 0xf6 }, + { 0xf8, 0x2c1 }, + { 0x2c6, 0x2d1 }, + { 0x2e0, 0x2e4 }, + { 0x2ec, 0x2ec }, + { 0x2ee, 0x2ee }, + { 0x345, 0x345 }, + { 0x363, 0x374 }, + { 0x376, 0x377 }, + { 0x37a, 0x37d }, + { 0x37f, 0x37f }, + { 0x386, 0x386 }, + { 0x388, 0x38a }, + { 0x38c, 0x38c }, + { 0x38e, 0x3a1 }, + { 0x3a3, 0x3f5 }, + { 0x3f7, 0x481 }, + { 0x48a, 0x52f }, + { 0x531, 0x556 }, + { 0x559, 0x559 }, + { 0x560, 0x588 }, + { 0x5b0, 0x5bd }, + { 0x5bf, 0x5bf }, + { 0x5c1, 0x5c2 }, + { 0x5c4, 0x5c5 }, + { 0x5c7, 0x5c7 }, + { 0x5d0, 0x5ea }, + { 0x5ef, 0x5f2 }, + { 0x610, 0x61a }, + { 0x620, 0x657 }, + { 0x659, 0x65f }, + { 0x66e, 0x6d3 }, + { 0x6d5, 0x6dc }, + { 0x6e1, 0x6e8 }, + { 0x6ed, 0x6ef }, + { 0x6fa, 0x6fc }, + { 0x6ff, 0x6ff }, + { 0x710, 0x73f }, + { 0x74d, 0x7b1 }, + { 0x7ca, 0x7ea }, + { 0x7f4, 0x7f5 }, + { 0x7fa, 0x7fa }, + { 0x800, 0x817 }, + { 0x81a, 0x82c }, + { 0x840, 0x858 }, + { 0x860, 0x86a }, + { 0x870, 0x887 }, + { 0x889, 0x88e }, + { 0x897, 0x897 }, + { 0x8a0, 0x8c9 }, + { 0x8d4, 0x8df }, + { 0x8e3, 0x8e9 }, + { 0x8f0, 0x93b }, + { 0x93d, 0x94c }, + { 0x94e, 0x950 }, + { 0x955, 0x963 }, + { 0x971, 0x983 }, + { 0x985, 0x98c }, + { 0x98f, 0x990 }, + { 0x993, 0x9a8 }, + { 0x9aa, 0x9b0 }, + { 0x9b2, 0x9b2 }, + { 0x9b6, 0x9b9 }, + { 0x9bd, 0x9c4 }, + { 0x9c7, 0x9c8 }, + { 0x9cb, 0x9cc }, + { 0x9ce, 0x9ce }, + { 0x9d7, 0x9d7 }, + { 0x9dc, 0x9dd }, + { 0x9df, 0x9e3 }, + { 0x9f0, 0x9f1 }, + { 0x9fc, 0x9fc }, + { 0xa01, 0xa03 }, + { 0xa05, 0xa0a }, + { 0xa0f, 0xa10 }, + { 0xa13, 0xa28 }, + { 0xa2a, 0xa30 }, + { 0xa32, 0xa33 }, + { 0xa35, 0xa36 }, + { 0xa38, 0xa39 }, + { 0xa3e, 0xa42 }, + { 0xa47, 0xa48 }, + { 0xa4b, 0xa4c }, + { 0xa51, 0xa51 }, + { 0xa59, 0xa5c }, + { 0xa5e, 0xa5e }, + { 0xa70, 0xa75 }, + { 0xa81, 0xa83 }, + { 0xa85, 0xa8d }, + { 0xa8f, 0xa91 }, + { 0xa93, 0xaa8 }, + { 0xaaa, 0xab0 }, + { 0xab2, 0xab3 }, + { 0xab5, 0xab9 }, + { 0xabd, 0xac5 }, + { 0xac7, 0xac9 }, + { 0xacb, 0xacc }, + { 0xad0, 0xad0 }, + { 0xae0, 0xae3 }, + { 0xaf9, 0xafc }, + { 0xb01, 0xb03 }, + { 0xb05, 0xb0c }, + { 0xb0f, 0xb10 }, + { 0xb13, 0xb28 }, + { 0xb2a, 0xb30 }, + { 0xb32, 0xb33 }, + { 0xb35, 0xb39 }, + { 0xb3d, 0xb44 }, + { 0xb47, 0xb48 }, + { 0xb4b, 0xb4c }, + { 0xb56, 0xb57 }, + { 0xb5c, 0xb5d }, + { 0xb5f, 0xb63 }, + { 0xb71, 0xb71 }, + { 0xb82, 0xb83 }, + { 0xb85, 0xb8a }, + { 0xb8e, 0xb90 }, + { 0xb92, 0xb95 }, + { 0xb99, 0xb9a }, + { 0xb9c, 0xb9c }, + { 0xb9e, 0xb9f }, + { 0xba3, 0xba4 }, + { 0xba8, 0xbaa }, + { 0xbae, 0xbb9 }, + { 0xbbe, 0xbc2 }, + { 0xbc6, 0xbc8 }, + { 0xbca, 0xbcc }, + { 0xbd0, 0xbd0 }, + { 0xbd7, 0xbd7 }, + { 0xc00, 0xc0c }, + { 0xc0e, 0xc10 }, + { 0xc12, 0xc28 }, + { 0xc2a, 0xc39 }, + { 0xc3d, 0xc44 }, + { 0xc46, 0xc48 }, + { 0xc4a, 0xc4c }, + { 0xc55, 0xc56 }, + { 0xc58, 0xc5a }, + { 0xc5d, 0xc5d }, + { 0xc60, 0xc63 }, + { 0xc80, 0xc83 }, + { 0xc85, 0xc8c }, + { 0xc8e, 0xc90 }, + { 0xc92, 0xca8 }, + { 0xcaa, 0xcb3 }, + { 0xcb5, 0xcb9 }, + { 0xcbd, 0xcc4 }, + { 0xcc6, 0xcc8 }, + { 0xcca, 0xccc }, + { 0xcd5, 0xcd6 }, + { 0xcdd, 0xcde }, + { 0xce0, 0xce3 }, + { 0xcf1, 0xcf3 }, + { 0xd00, 0xd0c }, + { 0xd0e, 0xd10 }, + { 0xd12, 0xd3a }, + { 0xd3d, 0xd44 }, + { 0xd46, 0xd48 }, + { 0xd4a, 0xd4c }, + { 0xd4e, 0xd4e }, + { 0xd54, 0xd57 }, + { 0xd5f, 0xd63 }, + { 0xd7a, 0xd7f }, + { 0xd81, 0xd83 }, + { 0xd85, 0xd96 }, + { 0xd9a, 0xdb1 }, + { 0xdb3, 0xdbb }, + { 0xdbd, 0xdbd }, + { 0xdc0, 0xdc6 }, + { 0xdcf, 0xdd4 }, + { 0xdd6, 0xdd6 }, + { 0xdd8, 0xddf }, + { 0xdf2, 0xdf3 }, + { 0xe01, 0xe3a }, + { 0xe40, 0xe46 }, + { 0xe4d, 0xe4d }, + { 0xe81, 0xe82 }, + { 0xe84, 0xe84 }, + { 0xe86, 0xe8a }, + { 0xe8c, 0xea3 }, + { 0xea5, 0xea5 }, + { 0xea7, 0xeb9 }, + { 0xebb, 0xebd }, + { 0xec0, 0xec4 }, + { 0xec6, 0xec6 }, + { 0xecd, 0xecd }, + { 0xedc, 0xedf }, + { 0xf00, 0xf00 }, + { 0xf40, 0xf47 }, + { 0xf49, 0xf6c }, + { 0xf71, 0xf83 }, + { 0xf88, 0xf97 }, + { 0xf99, 0xfbc }, + { 0x1000, 0x1036 }, + { 0x1038, 0x1038 }, + { 0x103b, 0x103f }, + { 0x1050, 0x108f }, + { 0x109a, 0x109d }, + { 0x10a0, 0x10c5 }, + { 0x10c7, 0x10c7 }, + { 0x10cd, 0x10cd }, + { 0x10d0, 0x10fa }, + { 0x10fc, 0x1248 }, + { 0x124a, 0x124d }, + { 0x1250, 0x1256 }, + { 0x1258, 0x1258 }, + { 0x125a, 0x125d }, + { 0x1260, 0x1288 }, + { 0x128a, 0x128d }, + { 0x1290, 0x12b0 }, + { 0x12b2, 0x12b5 }, + { 0x12b8, 0x12be }, + { 0x12c0, 0x12c0 }, + { 0x12c2, 0x12c5 }, + { 0x12c8, 0x12d6 }, + { 0x12d8, 0x1310 }, + { 0x1312, 0x1315 }, + { 0x1318, 0x135a }, + { 0x1380, 0x138f }, + { 0x13a0, 0x13f5 }, + { 0x13f8, 0x13fd }, + { 0x1401, 0x166c }, + { 0x166f, 0x167f }, + { 0x1681, 0x169a }, + { 0x16a0, 0x16ea }, + { 0x16ee, 0x16f8 }, + { 0x1700, 0x1713 }, + { 0x171f, 0x1733 }, + { 0x1740, 0x1753 }, + { 0x1760, 0x176c }, + { 0x176e, 0x1770 }, + { 0x1772, 0x1773 }, + { 0x1780, 0x17b3 }, + { 0x17b6, 0x17c8 }, + { 0x17d7, 0x17d7 }, + { 0x17dc, 0x17dc }, + { 0x1820, 0x1878 }, + { 0x1880, 0x18aa }, + { 0x18b0, 0x18f5 }, + { 0x1900, 0x191e }, + { 0x1920, 0x192b }, + { 0x1930, 0x1938 }, + { 0x1950, 0x196d }, + { 0x1970, 0x1974 }, + { 0x1980, 0x19ab }, + { 0x19b0, 0x19c9 }, + { 0x1a00, 0x1a1b }, + { 0x1a20, 0x1a5e }, + { 0x1a61, 0x1a74 }, + { 0x1aa7, 0x1aa7 }, + { 0x1abf, 0x1ac0 }, + { 0x1acc, 0x1ace }, + { 0x1b00, 0x1b33 }, + { 0x1b35, 0x1b43 }, + { 0x1b45, 0x1b4c }, + { 0x1b80, 0x1ba9 }, + { 0x1bac, 0x1baf }, + { 0x1bba, 0x1be5 }, + { 0x1be7, 0x1bf1 }, + { 0x1c00, 0x1c36 }, + { 0x1c4d, 0x1c4f }, + { 0x1c5a, 0x1c7d }, + { 0x1c80, 0x1c8a }, + { 0x1c90, 0x1cba }, + { 0x1cbd, 0x1cbf }, + { 0x1ce9, 0x1cec }, + { 0x1cee, 0x1cf3 }, + { 0x1cf5, 0x1cf6 }, + { 0x1cfa, 0x1cfa }, + { 0x1d00, 0x1dbf }, + { 0x1dd3, 0x1df4 }, + { 0x1e00, 0x1f15 }, + { 0x1f18, 0x1f1d }, + { 0x1f20, 0x1f45 }, + { 0x1f48, 0x1f4d }, + { 0x1f50, 0x1f57 }, + { 0x1f59, 0x1f59 }, + { 0x1f5b, 0x1f5b }, + { 0x1f5d, 0x1f5d }, + { 0x1f5f, 0x1f7d }, + { 0x1f80, 0x1fb4 }, + { 0x1fb6, 0x1fbc }, + { 0x1fbe, 0x1fbe }, + { 0x1fc2, 0x1fc4 }, + { 0x1fc6, 0x1fcc }, + { 0x1fd0, 0x1fd3 }, + { 0x1fd6, 0x1fdb }, + { 0x1fe0, 0x1fec }, + { 0x1ff2, 0x1ff4 }, + { 0x1ff6, 0x1ffc }, + { 0x2071, 0x2071 }, + { 0x207f, 0x207f }, + { 0x2090, 0x209c }, + { 0x2102, 0x2102 }, + { 0x2107, 0x2107 }, + { 0x210a, 0x2113 }, + { 0x2115, 0x2115 }, + { 0x2119, 0x211d }, + { 0x2124, 0x2124 }, + { 0x2126, 0x2126 }, + { 0x2128, 0x2128 }, + { 0x212a, 0x212d }, + { 0x212f, 0x2139 }, + { 0x213c, 0x213f }, + { 0x2145, 0x2149 }, + { 0x214e, 0x214e }, + { 0x2160, 0x2188 }, + { 0x24b6, 0x24e9 }, + { 0x2c00, 0x2ce4 }, + { 0x2ceb, 0x2cee }, + { 0x2cf2, 0x2cf3 }, + { 0x2d00, 0x2d25 }, + { 0x2d27, 0x2d27 }, + { 0x2d2d, 0x2d2d }, + { 0x2d30, 0x2d67 }, + { 0x2d6f, 0x2d6f }, + { 0x2d80, 0x2d96 }, + { 0x2da0, 0x2da6 }, + { 0x2da8, 0x2dae }, + { 0x2db0, 0x2db6 }, + { 0x2db8, 0x2dbe }, + { 0x2dc0, 0x2dc6 }, + { 0x2dc8, 0x2dce }, + { 0x2dd0, 0x2dd6 }, + { 0x2dd8, 0x2dde }, + { 0x2de0, 0x2dff }, + { 0x2e2f, 0x2e2f }, + { 0x3005, 0x3007 }, + { 0x3021, 0x3029 }, + { 0x3031, 0x3035 }, + { 0x3038, 0x303c }, + { 0x3041, 0x3096 }, + { 0x309d, 0x309f }, + { 0x30a1, 0x30fa }, + { 0x30fc, 0x30ff }, + { 0x3105, 0x312f }, + { 0x3131, 0x318e }, + { 0x31a0, 0x31bf }, + { 0x31f0, 0x31ff }, + { 0x3400, 0x4dbf }, + { 0x4e00, 0xa48c }, + { 0xa4d0, 0xa4fd }, + { 0xa500, 0xa60c }, + { 0xa610, 0xa61f }, + { 0xa62a, 0xa62b }, + { 0xa640, 0xa66e }, + { 0xa674, 0xa67b }, + { 0xa67f, 0xa6ef }, + { 0xa717, 0xa71f }, + { 0xa722, 0xa788 }, + { 0xa78b, 0xa7cd }, + { 0xa7d0, 0xa7d1 }, + { 0xa7d3, 0xa7d3 }, + { 0xa7d5, 0xa7dc }, + { 0xa7f2, 0xa805 }, + { 0xa807, 0xa827 }, + { 0xa840, 0xa873 }, + { 0xa880, 0xa8c3 }, + { 0xa8c5, 0xa8c5 }, + { 0xa8f2, 0xa8f7 }, + { 0xa8fb, 0xa8fb }, + { 0xa8fd, 0xa8ff }, + { 0xa90a, 0xa92a }, + { 0xa930, 0xa952 }, + { 0xa960, 0xa97c }, + { 0xa980, 0xa9b2 }, + { 0xa9b4, 0xa9bf }, + { 0xa9cf, 0xa9cf }, + { 0xa9e0, 0xa9ef }, + { 0xa9fa, 0xa9fe }, + { 0xaa00, 0xaa36 }, + { 0xaa40, 0xaa4d }, + { 0xaa60, 0xaa76 }, + { 0xaa7a, 0xaabe }, + { 0xaac0, 0xaac0 }, + { 0xaac2, 0xaac2 }, + { 0xaadb, 0xaadd }, + { 0xaae0, 0xaaef }, + { 0xaaf2, 0xaaf5 }, + { 0xab01, 0xab06 }, + { 0xab09, 0xab0e }, + { 0xab11, 0xab16 }, + { 0xab20, 0xab26 }, + { 0xab28, 0xab2e }, + { 0xab30, 0xab5a }, + { 0xab5c, 0xab69 }, + { 0xab70, 0xabea }, + { 0xac00, 0xd7a3 }, + { 0xd7b0, 0xd7c6 }, + { 0xd7cb, 0xd7fb }, + { 0xf900, 0xfa6d }, + { 0xfa70, 0xfad9 }, + { 0xfb00, 0xfb06 }, + { 0xfb13, 0xfb17 }, + { 0xfb1d, 0xfb28 }, + { 0xfb2a, 0xfb36 }, + { 0xfb38, 0xfb3c }, + { 0xfb3e, 0xfb3e }, + { 0xfb40, 0xfb41 }, + { 0xfb43, 0xfb44 }, + { 0xfb46, 0xfbb1 }, + { 0xfbd3, 0xfd3d }, + { 0xfd50, 0xfd8f }, + { 0xfd92, 0xfdc7 }, + { 0xfdf0, 0xfdfb }, + { 0xfe70, 0xfe74 }, + { 0xfe76, 0xfefc }, + { 0xff21, 0xff3a }, + { 0xff41, 0xff5a }, + { 0xff66, 0xffbe }, + { 0xffc2, 0xffc7 }, + { 0xffca, 0xffcf }, + { 0xffd2, 0xffd7 }, + { 0xffda, 0xffdc }, + { 0x10000, 0x1000b }, + { 0x1000d, 0x10026 }, + { 0x10028, 0x1003a }, + { 0x1003c, 0x1003d }, + { 0x1003f, 0x1004d }, + { 0x10050, 0x1005d }, + { 0x10080, 0x100fa }, + { 0x10140, 0x10174 }, + { 0x10280, 0x1029c }, + { 0x102a0, 0x102d0 }, + { 0x10300, 0x1031f }, + { 0x1032d, 0x1034a }, + { 0x10350, 0x1037a }, + { 0x10380, 0x1039d }, + { 0x103a0, 0x103c3 }, + { 0x103c8, 0x103cf }, + { 0x103d1, 0x103d5 }, + { 0x10400, 0x1049d }, + { 0x104b0, 0x104d3 }, + { 0x104d8, 0x104fb }, + { 0x10500, 0x10527 }, + { 0x10530, 0x10563 }, + { 0x10570, 0x1057a }, + { 0x1057c, 0x1058a }, + { 0x1058c, 0x10592 }, + { 0x10594, 0x10595 }, + { 0x10597, 0x105a1 }, + { 0x105a3, 0x105b1 }, + { 0x105b3, 0x105b9 }, + { 0x105bb, 0x105bc }, + { 0x105c0, 0x105f3 }, + { 0x10600, 0x10736 }, + { 0x10740, 0x10755 }, + { 0x10760, 0x10767 }, + { 0x10780, 0x10785 }, + { 0x10787, 0x107b0 }, + { 0x107b2, 0x107ba }, + { 0x10800, 0x10805 }, + { 0x10808, 0x10808 }, + { 0x1080a, 0x10835 }, + { 0x10837, 0x10838 }, + { 0x1083c, 0x1083c }, + { 0x1083f, 0x10855 }, + { 0x10860, 0x10876 }, + { 0x10880, 0x1089e }, + { 0x108e0, 0x108f2 }, + { 0x108f4, 0x108f5 }, + { 0x10900, 0x10915 }, + { 0x10920, 0x10939 }, + { 0x10980, 0x109b7 }, + { 0x109be, 0x109bf }, + { 0x10a00, 0x10a03 }, + { 0x10a05, 0x10a06 }, + { 0x10a0c, 0x10a13 }, + { 0x10a15, 0x10a17 }, + { 0x10a19, 0x10a35 }, + { 0x10a60, 0x10a7c }, + { 0x10a80, 0x10a9c }, + { 0x10ac0, 0x10ac7 }, + { 0x10ac9, 0x10ae4 }, + { 0x10b00, 0x10b35 }, + { 0x10b40, 0x10b55 }, + { 0x10b60, 0x10b72 }, + { 0x10b80, 0x10b91 }, + { 0x10c00, 0x10c48 }, + { 0x10c80, 0x10cb2 }, + { 0x10cc0, 0x10cf2 }, + { 0x10d00, 0x10d27 }, + { 0x10d4a, 0x10d65 }, + { 0x10d69, 0x10d69 }, + { 0x10d6f, 0x10d85 }, + { 0x10e80, 0x10ea9 }, + { 0x10eab, 0x10eac }, + { 0x10eb0, 0x10eb1 }, + { 0x10ec2, 0x10ec4 }, + { 0x10efc, 0x10efc }, + { 0x10f00, 0x10f1c }, + { 0x10f27, 0x10f27 }, + { 0x10f30, 0x10f45 }, + { 0x10f70, 0x10f81 }, + { 0x10fb0, 0x10fc4 }, + { 0x10fe0, 0x10ff6 }, + { 0x11000, 0x11045 }, + { 0x11071, 0x11075 }, + { 0x11080, 0x110b8 }, + { 0x110c2, 0x110c2 }, + { 0x110d0, 0x110e8 }, + { 0x11100, 0x11132 }, + { 0x11144, 0x11147 }, + { 0x11150, 0x11172 }, + { 0x11176, 0x11176 }, + { 0x11180, 0x111bf }, + { 0x111c1, 0x111c4 }, + { 0x111ce, 0x111cf }, + { 0x111da, 0x111da }, + { 0x111dc, 0x111dc }, + { 0x11200, 0x11211 }, + { 0x11213, 0x11234 }, + { 0x11237, 0x11237 }, + { 0x1123e, 0x11241 }, + { 0x11280, 0x11286 }, + { 0x11288, 0x11288 }, + { 0x1128a, 0x1128d }, + { 0x1128f, 0x1129d }, + { 0x1129f, 0x112a8 }, + { 0x112b0, 0x112e8 }, + { 0x11300, 0x11303 }, + { 0x11305, 0x1130c }, + { 0x1130f, 0x11310 }, + { 0x11313, 0x11328 }, + { 0x1132a, 0x11330 }, + { 0x11332, 0x11333 }, + { 0x11335, 0x11339 }, + { 0x1133d, 0x11344 }, + { 0x11347, 0x11348 }, + { 0x1134b, 0x1134c }, + { 0x11350, 0x11350 }, + { 0x11357, 0x11357 }, + { 0x1135d, 0x11363 }, + { 0x11380, 0x11389 }, + { 0x1138b, 0x1138b }, + { 0x1138e, 0x1138e }, + { 0x11390, 0x113b5 }, + { 0x113b7, 0x113c0 }, + { 0x113c2, 0x113c2 }, + { 0x113c5, 0x113c5 }, + { 0x113c7, 0x113ca }, + { 0x113cc, 0x113cd }, + { 0x113d1, 0x113d1 }, + { 0x113d3, 0x113d3 }, + { 0x11400, 0x11441 }, + { 0x11443, 0x11445 }, + { 0x11447, 0x1144a }, + { 0x1145f, 0x11461 }, + { 0x11480, 0x114c1 }, + { 0x114c4, 0x114c5 }, + { 0x114c7, 0x114c7 }, + { 0x11580, 0x115b5 }, + { 0x115b8, 0x115be }, + { 0x115d8, 0x115dd }, + { 0x11600, 0x1163e }, + { 0x11640, 0x11640 }, + { 0x11644, 0x11644 }, + { 0x11680, 0x116b5 }, + { 0x116b8, 0x116b8 }, + { 0x11700, 0x1171a }, + { 0x1171d, 0x1172a }, + { 0x11740, 0x11746 }, + { 0x11800, 0x11838 }, + { 0x118a0, 0x118df }, + { 0x118ff, 0x11906 }, + { 0x11909, 0x11909 }, + { 0x1190c, 0x11913 }, + { 0x11915, 0x11916 }, + { 0x11918, 0x11935 }, + { 0x11937, 0x11938 }, + { 0x1193b, 0x1193c }, + { 0x1193f, 0x11942 }, + { 0x119a0, 0x119a7 }, + { 0x119aa, 0x119d7 }, + { 0x119da, 0x119df }, + { 0x119e1, 0x119e1 }, + { 0x119e3, 0x119e4 }, + { 0x11a00, 0x11a32 }, + { 0x11a35, 0x11a3e }, + { 0x11a50, 0x11a97 }, + { 0x11a9d, 0x11a9d }, + { 0x11ab0, 0x11af8 }, + { 0x11bc0, 0x11be0 }, + { 0x11c00, 0x11c08 }, + { 0x11c0a, 0x11c36 }, + { 0x11c38, 0x11c3e }, + { 0x11c40, 0x11c40 }, + { 0x11c72, 0x11c8f }, + { 0x11c92, 0x11ca7 }, + { 0x11ca9, 0x11cb6 }, + { 0x11d00, 0x11d06 }, + { 0x11d08, 0x11d09 }, + { 0x11d0b, 0x11d36 }, + { 0x11d3a, 0x11d3a }, + { 0x11d3c, 0x11d3d }, + { 0x11d3f, 0x11d41 }, + { 0x11d43, 0x11d43 }, + { 0x11d46, 0x11d47 }, + { 0x11d60, 0x11d65 }, + { 0x11d67, 0x11d68 }, + { 0x11d6a, 0x11d8e }, + { 0x11d90, 0x11d91 }, + { 0x11d93, 0x11d96 }, + { 0x11d98, 0x11d98 }, + { 0x11ee0, 0x11ef6 }, + { 0x11f00, 0x11f10 }, + { 0x11f12, 0x11f3a }, + { 0x11f3e, 0x11f40 }, + { 0x11fb0, 0x11fb0 }, + { 0x12000, 0x12399 }, + { 0x12400, 0x1246e }, + { 0x12480, 0x12543 }, + { 0x12f90, 0x12ff0 }, + { 0x13000, 0x1342f }, + { 0x13441, 0x13446 }, + { 0x13460, 0x143fa }, + { 0x14400, 0x14646 }, + { 0x16100, 0x1612e }, + { 0x16800, 0x16a38 }, + { 0x16a40, 0x16a5e }, + { 0x16a70, 0x16abe }, + { 0x16ad0, 0x16aed }, + { 0x16b00, 0x16b2f }, + { 0x16b40, 0x16b43 }, + { 0x16b63, 0x16b77 }, + { 0x16b7d, 0x16b8f }, + { 0x16d40, 0x16d6c }, + { 0x16e40, 0x16e7f }, + { 0x16f00, 0x16f4a }, + { 0x16f4f, 0x16f87 }, + { 0x16f8f, 0x16f9f }, + { 0x16fe0, 0x16fe1 }, + { 0x16fe3, 0x16fe3 }, + { 0x16ff0, 0x16ff1 }, + { 0x17000, 0x187f7 }, + { 0x18800, 0x18cd5 }, + { 0x18cff, 0x18d08 }, + { 0x1aff0, 0x1aff3 }, + { 0x1aff5, 0x1affb }, + { 0x1affd, 0x1affe }, + { 0x1b000, 0x1b122 }, + { 0x1b132, 0x1b132 }, + { 0x1b150, 0x1b152 }, + { 0x1b155, 0x1b155 }, + { 0x1b164, 0x1b167 }, + { 0x1b170, 0x1b2fb }, + { 0x1bc00, 0x1bc6a }, + { 0x1bc70, 0x1bc7c }, + { 0x1bc80, 0x1bc88 }, + { 0x1bc90, 0x1bc99 }, + { 0x1bc9e, 0x1bc9e }, + { 0x1d400, 0x1d454 }, + { 0x1d456, 0x1d49c }, + { 0x1d49e, 0x1d49f }, + { 0x1d4a2, 0x1d4a2 }, + { 0x1d4a5, 0x1d4a6 }, + { 0x1d4a9, 0x1d4ac }, + { 0x1d4ae, 0x1d4b9 }, + { 0x1d4bb, 0x1d4bb }, + { 0x1d4bd, 0x1d4c3 }, + { 0x1d4c5, 0x1d505 }, + { 0x1d507, 0x1d50a }, + { 0x1d50d, 0x1d514 }, + { 0x1d516, 0x1d51c }, + { 0x1d51e, 0x1d539 }, + { 0x1d53b, 0x1d53e }, + { 0x1d540, 0x1d544 }, + { 0x1d546, 0x1d546 }, + { 0x1d54a, 0x1d550 }, + { 0x1d552, 0x1d6a5 }, + { 0x1d6a8, 0x1d6c0 }, + { 0x1d6c2, 0x1d6da }, + { 0x1d6dc, 0x1d6fa }, + { 0x1d6fc, 0x1d714 }, + { 0x1d716, 0x1d734 }, + { 0x1d736, 0x1d74e }, + { 0x1d750, 0x1d76e }, + { 0x1d770, 0x1d788 }, + { 0x1d78a, 0x1d7a8 }, + { 0x1d7aa, 0x1d7c2 }, + { 0x1d7c4, 0x1d7cb }, + { 0x1df00, 0x1df1e }, + { 0x1df25, 0x1df2a }, + { 0x1e000, 0x1e006 }, + { 0x1e008, 0x1e018 }, + { 0x1e01b, 0x1e021 }, + { 0x1e023, 0x1e024 }, + { 0x1e026, 0x1e02a }, + { 0x1e030, 0x1e06d }, + { 0x1e08f, 0x1e08f }, + { 0x1e100, 0x1e12c }, + { 0x1e137, 0x1e13d }, + { 0x1e14e, 0x1e14e }, + { 0x1e290, 0x1e2ad }, + { 0x1e2c0, 0x1e2eb }, + { 0x1e4d0, 0x1e4eb }, + { 0x1e5d0, 0x1e5ed }, + { 0x1e5f0, 0x1e5f0 }, + { 0x1e7e0, 0x1e7e6 }, + { 0x1e7e8, 0x1e7eb }, + { 0x1e7ed, 0x1e7ee }, + { 0x1e7f0, 0x1e7fe }, + { 0x1e800, 0x1e8c4 }, + { 0x1e900, 0x1e943 }, + { 0x1e947, 0x1e947 }, + { 0x1e94b, 0x1e94b }, + { 0x1ee00, 0x1ee03 }, + { 0x1ee05, 0x1ee1f }, + { 0x1ee21, 0x1ee22 }, + { 0x1ee24, 0x1ee24 }, + { 0x1ee27, 0x1ee27 }, + { 0x1ee29, 0x1ee32 }, + { 0x1ee34, 0x1ee37 }, + { 0x1ee39, 0x1ee39 }, + { 0x1ee3b, 0x1ee3b }, + { 0x1ee42, 0x1ee42 }, + { 0x1ee47, 0x1ee47 }, + { 0x1ee49, 0x1ee49 }, + { 0x1ee4b, 0x1ee4b }, + { 0x1ee4d, 0x1ee4f }, + { 0x1ee51, 0x1ee52 }, + { 0x1ee54, 0x1ee54 }, + { 0x1ee57, 0x1ee57 }, + { 0x1ee59, 0x1ee59 }, + { 0x1ee5b, 0x1ee5b }, + { 0x1ee5d, 0x1ee5d }, + { 0x1ee5f, 0x1ee5f }, + { 0x1ee61, 0x1ee62 }, + { 0x1ee64, 0x1ee64 }, + { 0x1ee67, 0x1ee6a }, + { 0x1ee6c, 0x1ee72 }, + { 0x1ee74, 0x1ee77 }, + { 0x1ee79, 0x1ee7c }, + { 0x1ee7e, 0x1ee7e }, + { 0x1ee80, 0x1ee89 }, + { 0x1ee8b, 0x1ee9b }, + { 0x1eea1, 0x1eea3 }, + { 0x1eea5, 0x1eea9 }, + { 0x1eeab, 0x1eebb }, + { 0x1f130, 0x1f149 }, + { 0x1f150, 0x1f169 }, + { 0x1f170, 0x1f189 }, + { 0x20000, 0x2a6df }, + { 0x2a700, 0x2b739 }, + { 0x2b740, 0x2b81d }, + { 0x2b820, 0x2cea1 }, + { 0x2ceb0, 0x2ebe0 }, + { 0x2ebf0, 0x2ee5d }, + { 0x2f800, 0x2fa1d }, + { 0x30000, 0x3134a }, + { 0x31350, 0x323af }, +}; + +} // namespace godot diff --git a/include/godot_cpp/variant/char_utils.hpp b/include/godot_cpp/variant/char_utils.hpp index 6b672be30..71522c6c3 100644 --- a/include/godot_cpp/variant/char_utils.hpp +++ b/include/godot_cpp/variant/char_utils.hpp @@ -30,58 +30,105 @@ #pragma once -static _FORCE_INLINE_ bool is_ascii_upper_case(char32_t c) { - return (c >= 'A' && c <= 'Z'); +#include "char_range.inc.hpp" + +namespace godot { + +#define BSEARCH_CHAR_RANGE(m_array) \ + int low = 0; \ + int high = sizeof(m_array) / sizeof(m_array[0]) - 1; \ + int middle = (low + high) / 2; \ + \ + while (low <= high) { \ + if (p_char < m_array[middle].start) { \ + high = middle - 1; \ + } else if (p_char > m_array[middle].end) { \ + low = middle + 1; \ + } else { \ + return true; \ + } \ + \ + middle = (low + high) / 2; \ + } \ + \ + return false + +constexpr bool is_unicode_identifier_start(char32_t p_char) { + BSEARCH_CHAR_RANGE(xid_start); +} + +constexpr bool is_unicode_identifier_continue(char32_t p_char) { + BSEARCH_CHAR_RANGE(xid_continue); +} + +constexpr bool is_unicode_upper_case(char32_t p_char) { + BSEARCH_CHAR_RANGE(uppercase_letter); } -static _FORCE_INLINE_ bool is_ascii_lower_case(char32_t c) { - return (c >= 'a' && c <= 'z'); +constexpr bool is_unicode_lower_case(char32_t p_char) { + BSEARCH_CHAR_RANGE(lowercase_letter); } -static _FORCE_INLINE_ bool is_digit(char32_t c) { - return (c >= '0' && c <= '9'); +constexpr bool is_unicode_letter(char32_t p_char) { + BSEARCH_CHAR_RANGE(unicode_letter); } -static _FORCE_INLINE_ bool is_hex_digit(char32_t c) { - return (is_digit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F')); +#undef BSEARCH_CHAR_RANGE + +constexpr bool is_ascii_upper_case(char32_t p_char) { + return (p_char >= 'A' && p_char <= 'Z'); } -static _FORCE_INLINE_ bool is_binary_digit(char32_t c) { - return (c == '0' || c == '1'); +constexpr bool is_ascii_lower_case(char32_t p_char) { + return (p_char >= 'a' && p_char <= 'z'); } -static _FORCE_INLINE_ bool is_ascii_char(char32_t c) { - return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); +constexpr bool is_digit(char32_t p_char) { + return (p_char >= '0' && p_char <= '9'); } -static _FORCE_INLINE_ bool is_ascii_alphanumeric_char(char32_t c) { - return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'); +constexpr bool is_hex_digit(char32_t p_char) { + return (is_digit(p_char) || (p_char >= 'a' && p_char <= 'f') || (p_char >= 'A' && p_char <= 'F')); } -static _FORCE_INLINE_ bool is_ascii_identifier_char(char32_t c) { - return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_'; +constexpr bool is_binary_digit(char32_t p_char) { + return (p_char == '0' || p_char == '1'); } -static _FORCE_INLINE_ bool is_symbol(char32_t c) { - return c != '_' && ((c >= '!' && c <= '/') || (c >= ':' && c <= '@') || (c >= '[' && c <= '`') || (c >= '{' && c <= '~') || c == '\t' || c == ' '); +constexpr bool is_ascii_alphabet_char(char32_t p_char) { + return (p_char >= 'a' && p_char <= 'z') || (p_char >= 'A' && p_char <= 'Z'); } -static _FORCE_INLINE_ bool is_control(char32_t p_char) { +constexpr bool is_ascii_alphanumeric_char(char32_t p_char) { + return (p_char >= 'a' && p_char <= 'z') || (p_char >= 'A' && p_char <= 'Z') || (p_char >= '0' && p_char <= '9'); +} + +constexpr bool is_ascii_identifier_char(char32_t p_char) { + return (p_char >= 'a' && p_char <= 'z') || (p_char >= 'A' && p_char <= 'Z') || (p_char >= '0' && p_char <= '9') || p_char == '_'; +} + +constexpr bool is_symbol(char32_t p_char) { + return p_char != '_' && ((p_char >= '!' && p_char <= '/') || (p_char >= ':' && p_char <= '@') || (p_char >= '[' && p_char <= '`') || (p_char >= '{' && p_char <= '~') || p_char == '\t' || p_char == ' '); +} + +constexpr bool is_control(char32_t p_char) { return (p_char <= 0x001f) || (p_char >= 0x007f && p_char <= 0x009f); } -static _FORCE_INLINE_ bool is_whitespace(char32_t p_char) { - return (p_char == ' ') || (p_char == 0x00a0) || (p_char == 0x1680) || (p_char >= 0x2000 && p_char <= 0x200a) || (p_char == 0x202f) || (p_char == 0x205f) || (p_char == 0x3000) || (p_char == 0x2028) || (p_char == 0x2029) || (p_char >= 0x0009 && p_char <= 0x000d) || (p_char == 0x0085); +constexpr bool is_whitespace(char32_t p_char) { + return (p_char == ' ') || (p_char == 0x00a0) || (p_char == 0x1680) || (p_char >= 0x2000 && p_char <= 0x200b) || (p_char == 0x202f) || (p_char == 0x205f) || (p_char == 0x3000) || (p_char == 0x2028) || (p_char == 0x2029) || (p_char >= 0x0009 && p_char <= 0x000d) || (p_char == 0x0085); } -static _FORCE_INLINE_ bool is_linebreak(char32_t p_char) { +constexpr bool is_linebreak(char32_t p_char) { return (p_char >= 0x000a && p_char <= 0x000d) || (p_char == 0x0085) || (p_char == 0x2028) || (p_char == 0x2029); } -static _FORCE_INLINE_ bool is_punct(char32_t p_char) { +constexpr bool is_punct(char32_t p_char) { return (p_char >= ' ' && p_char <= '/') || (p_char >= ':' && p_char <= '@') || (p_char >= '[' && p_char <= '^') || (p_char == '`') || (p_char >= '{' && p_char <= '~') || (p_char >= 0x2000 && p_char <= 0x206f) || (p_char >= 0x3000 && p_char <= 0x303f); } -static _FORCE_INLINE_ bool is_underscore(char32_t p_char) { +constexpr bool is_underscore(char32_t p_char) { return (p_char == '_'); } + +} // namespace godot diff --git a/include/godot_cpp/variant/color.hpp b/include/godot_cpp/variant/color.hpp index 878a7d870..d3bbc725b 100644 --- a/include/godot_cpp/variant/color.hpp +++ b/include/godot_cpp/variant/color.hpp @@ -102,12 +102,10 @@ struct [[nodiscard]] Color { _FORCE_INLINE_ Color lerp(const Color &p_to, float p_weight) const { Color res = *this; - - res.r += (p_weight * (p_to.r - r)); - res.g += (p_weight * (p_to.g - g)); - res.b += (p_weight * (p_to.b - b)); - res.a += (p_weight * (p_to.a - a)); - + res.r = Math::lerp(res.r, p_to.r, p_weight); + res.g = Math::lerp(res.g, p_to.g, p_weight); + res.b = Math::lerp(res.b, p_to.b, p_weight); + res.a = Math::lerp(res.a, p_to.a, p_weight); return res; } @@ -128,33 +126,46 @@ struct [[nodiscard]] Color { } _FORCE_INLINE_ uint32_t to_rgbe9995() const { - const float pow2to9 = 512.0f; - const float B = 15.0f; - const float N = 9.0f; - - float sharedexp = 65408.000f; // Result of: ((pow2to9 - 1.0f) / pow2to9) * powf(2.0f, 31.0f - 15.0f) - - float cRed = MAX(0.0f, MIN(sharedexp, r)); - float cGreen = MAX(0.0f, MIN(sharedexp, g)); - float cBlue = MAX(0.0f, MIN(sharedexp, b)); - - float cMax = MAX(cRed, MAX(cGreen, cBlue)); - - float expp = MAX(-B - 1.0f, floor(Math::log(cMax) / (real_t)Math_LN2)) + 1.0f + B; - - float sMax = (float)floor((cMax / Math::pow(2.0f, expp - B - N)) + 0.5f); - - float exps = expp + 1.0f; - - if (0.0f <= sMax && sMax < pow2to9) { - exps = expp; - } - - float sRed = Math::floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); - float sGreen = Math::floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); - float sBlue = Math::floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); - - return (uint32_t(Math::fast_ftoi(sRed)) & 0x1FF) | ((uint32_t(Math::fast_ftoi(sGreen)) & 0x1FF) << 9) | ((uint32_t(Math::fast_ftoi(sBlue)) & 0x1FF) << 18) | ((uint32_t(Math::fast_ftoi(exps)) & 0x1F) << 27); + // https://github.com/microsoft/DirectX-Graphics-Samples/blob/v10.0.19041.0/MiniEngine/Core/Color.cpp + static const float kMaxVal = float(0x1FF << 7); + static const float kMinVal = float(1.f / (1 << 16)); + + // Clamp RGB to [0, 1.FF*2^16] + const float _r = CLAMP(r, 0.0f, kMaxVal); + const float _g = CLAMP(g, 0.0f, kMaxVal); + const float _b = CLAMP(b, 0.0f, kMaxVal); + + // Compute the maximum channel, no less than 1.0*2^-15 + const float MaxChannel = MAX(MAX(_r, _g), MAX(_b, kMinVal)); + + // Take the exponent of the maximum channel (rounding up the 9th bit) and + // add 15 to it. When added to the channels, it causes the implicit '1.0' + // bit and the first 8 mantissa bits to be shifted down to the low 9 bits + // of the mantissa, rounding the truncated bits. + union { + float f; + uint32_t i; + } R, G, B, E; + + E.f = MaxChannel; + E.i += 0x07804000; // Add 15 to the exponent and 0x4000 to the mantissa + E.i &= 0x7F800000; // Zero the mantissa + + // This shifts the 9-bit values we need into the lowest bits, rounding as + // needed. Note that if the channel has a smaller exponent than the max + // channel, it will shift even more. This is intentional. + R.f = _r + E.f; + G.f = _g + E.f; + B.f = _b + E.f; + + // Convert the Bias to the correct exponent in the upper 5 bits. + E.i <<= 4; + E.i += 0x10000000; + + // Combine the fields. RGB floats have unwanted data in the upper 9 + // bits. Only red needs to mask them off because green and blue shift + // it out to the left. + return E.i | (B.i << 18U) | (G.i << 9U) | (R.i & 511U); } _FORCE_INLINE_ Color blend(const Color &p_over) const { @@ -173,16 +184,16 @@ struct [[nodiscard]] Color { _FORCE_INLINE_ Color srgb_to_linear() const { return Color( - r < 0.04045f ? r * (1.0f / 12.92f) : Math::pow((r + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f), - g < 0.04045f ? g * (1.0f / 12.92f) : Math::pow((g + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f), - b < 0.04045f ? b * (1.0f / 12.92f) : Math::pow((b + 0.055f) * (float)(1.0 / (1.0 + 0.055)), 2.4f), + r < 0.04045f ? r * (1.0f / 12.92f) : Math::pow(float((r + 0.055) * (1.0 / (1.0 + 0.055))), 2.4f), + g < 0.04045f ? g * (1.0f / 12.92f) : Math::pow(float((g + 0.055) * (1.0 / (1.0 + 0.055))), 2.4f), + b < 0.04045f ? b * (1.0f / 12.92f) : Math::pow(float((b + 0.055) * (1.0 / (1.0 + 0.055))), 2.4f), a); } _FORCE_INLINE_ Color linear_to_srgb() const { return Color( - r < 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * Math::pow(r, 1.0f / 2.4f) - 0.055f, - g < 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * Math::pow(g, 1.0f / 2.4f) - 0.055f, - b < 0.0031308f ? 12.92f * b : (1.0f + 0.055f) * Math::pow(b, 1.0f / 2.4f) - 0.055f, a); + r < 0.0031308f ? 12.92f * r : (1.0 + 0.055) * Math::pow(r, 1.0f / 2.4f) - 0.055, + g < 0.0031308f ? 12.92f * g : (1.0 + 0.055) * Math::pow(g, 1.0f / 2.4f) - 0.055, + b < 0.0031308f ? 12.92f * b : (1.0 + 0.055) * Math::pow(b, 1.0f / 2.4f) - 0.055, a); } static Color hex(uint32_t p_hex); @@ -198,6 +209,7 @@ struct [[nodiscard]] Color { static Color from_string(const String &p_string, const Color &p_default); static Color from_hsv(float p_h, float p_s, float p_v, float p_alpha = 1.0f); static Color from_rgbe9995(uint32_t p_rgbe); + static Color from_rgba8(int64_t p_r8, int64_t p_g8, int64_t p_b8, int64_t p_a8 = 255); _FORCE_INLINE_ bool operator<(const Color &p_color) const; // Used in set keys. operator String() const; diff --git a/include/godot_cpp/variant/color_names.inc.hpp b/include/godot_cpp/variant/color_names.inc.hpp index e2c878327..3a2c359c0 100644 --- a/include/godot_cpp/variant/color_names.inc.hpp +++ b/include/godot_cpp/variant/color_names.inc.hpp @@ -187,7 +187,6 @@ static NamedColor named_colors[] = { { "WHITE_SMOKE", Color::hex(0xF5F5F5FF) }, { "YELLOW", Color::hex(0xFFFF00FF) }, { "YELLOW_GREEN", Color::hex(0x9ACD32FF) }, - { nullptr, Color() }, }; } // namespace godot diff --git a/include/godot_cpp/variant/plane.hpp b/include/godot_cpp/variant/plane.hpp index f2c440a23..97ae7c81d 100644 --- a/include/godot_cpp/variant/plane.hpp +++ b/include/godot_cpp/variant/plane.hpp @@ -49,7 +49,7 @@ struct [[nodiscard]] Plane { /* Plane-Point operations */ - _FORCE_INLINE_ Vector3 center() const { return normal * d; } + _FORCE_INLINE_ Vector3 get_center() const { return normal * d; } Vector3 get_any_perpendicular_normal() const; _FORCE_INLINE_ bool is_point_over(const Vector3 &p_point) const; ///< Point is over plane @@ -102,7 +102,7 @@ real_t Plane::distance_to(const Vector3 &p_point) const { bool Plane::has_point(const Vector3 &p_point, real_t p_tolerance) const { real_t dist = normal.dot(p_point) - d; - dist = Math::abs(dist); + dist = ABS(dist); return (dist <= p_tolerance); } diff --git a/include/godot_cpp/variant/projection.hpp b/include/godot_cpp/variant/projection.hpp index b7eb1f89e..e2283e6a6 100644 --- a/include/godot_cpp/variant/projection.hpp +++ b/include/godot_cpp/variant/projection.hpp @@ -31,6 +31,7 @@ #pragma once #include +#include #include #include @@ -55,21 +56,21 @@ struct [[nodiscard]] Projection { Vector4 columns[4]; - _FORCE_INLINE_ const Vector4 &operator[](const int p_axis) const { + _FORCE_INLINE_ const Vector4 &operator[](int p_axis) const { DEV_ASSERT((unsigned int)p_axis < 4); return columns[p_axis]; } - _FORCE_INLINE_ Vector4 &operator[](const int p_axis) { + _FORCE_INLINE_ Vector4 &operator[](int p_axis) { DEV_ASSERT((unsigned int)p_axis < 4); return columns[p_axis]; } - float determinant() const; + real_t determinant() const; void set_identity(); void set_zero(); void set_light_bias(); - void set_depth_correction(bool p_flip_y = true); + void set_depth_correction(bool p_flip_y = true, bool p_reverse_z = true, bool p_remap_z = true); void set_light_atlas_rect(const Rect2 &p_rect); void set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov = false); @@ -106,7 +107,7 @@ struct [[nodiscard]] Projection { real_t get_fov() const; bool is_orthogonal() const; - Array get_projection_planes(const Transform3D &p_transform) const; + Vector get_projection_planes(const Transform3D &p_transform) const; bool get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const; Vector2 get_viewport_half_extents() const; @@ -148,7 +149,7 @@ struct [[nodiscard]] Projection { return !(*this == p_cam); } - float get_lod_multiplier() const; + real_t get_lod_multiplier() const; Projection(); Projection(const Vector4 &p_x, const Vector4 &p_y, const Vector4 &p_z, const Vector4 &p_w); diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp index 33569addf..c93fe57e8 100644 --- a/include/godot_cpp/variant/quaternion.hpp +++ b/include/godot_cpp/variant/quaternion.hpp @@ -142,15 +142,24 @@ struct [[nodiscard]] Quaternion { } Quaternion(const Vector3 &p_v0, const Vector3 &p_v1) { // Shortest arc. - Vector3 c = p_v0.cross(p_v1); - real_t d = p_v0.dot(p_v1); - - if (d < -1.0f + (real_t)CMP_EPSILON) { - x = 0; - y = 1; - z = 0; +#ifdef MATH_CHECKS + ERR_FAIL_COND_MSG(p_v0.is_zero_approx() || p_v1.is_zero_approx(), "The vectors must not be zero."); +#endif + constexpr real_t ALMOST_ONE = 1.0f - (real_t)CMP_EPSILON; + Vector3 n0 = p_v0.normalized(); + Vector3 n1 = p_v1.normalized(); + real_t d = n0.dot(n1); + if (abs(d) > ALMOST_ONE) { + if (d >= 0) { + return; // Vectors are same. + } + Vector3 axis = n0.get_any_perpendicular(); + x = axis.x; + y = axis.y; + z = axis.z; w = 0; } else { + Vector3 c = n0.cross(n1); real_t s = Math::sqrt((1.0f + d) * 2.0f); real_t rs = 1.0f / s; diff --git a/include/godot_cpp/variant/rect2.hpp b/include/godot_cpp/variant/rect2.hpp index 3a5e18e3b..a5e334041 100644 --- a/include/godot_cpp/variant/rect2.hpp +++ b/include/godot_cpp/variant/rect2.hpp @@ -52,7 +52,7 @@ struct [[nodiscard]] Rect2 { _FORCE_INLINE_ Vector2 get_center() const { return position + (size * 0.5f); } - inline bool intersects(const Rect2 &p_rect, const bool p_include_borders = false) const { + inline bool intersects(const Rect2 &p_rect, bool p_include_borders = false) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); @@ -105,17 +105,17 @@ struct [[nodiscard]] Rect2 { } if (p_point.y < position.y) { real_t d = position.y - p_point.y; - dist = inside ? d : Math::min(dist, d); + dist = inside ? d : MIN(dist, d); inside = false; } if (p_point.x >= (position.x + size.x)) { real_t d = p_point.x - (position.x + size.x); - dist = inside ? d : Math::min(dist, d); + dist = inside ? d : MIN(dist, d); inside = false; } if (p_point.y >= (position.y + size.y)) { real_t d = p_point.y - (position.y + size.y); - dist = inside ? d : Math::min(dist, d); + dist = inside ? d : MIN(dist, d); inside = false; } @@ -145,7 +145,7 @@ struct [[nodiscard]] Rect2 { return size.x > 0.0f && size.y > 0.0f; } - // Returns the intersection between two Rect2s or an empty Rect2 if there is no intersection + // Returns the intersection between two Rect2s or an empty Rect2 if there is no intersection. inline Rect2 intersection(const Rect2 &p_rect) const { Rect2 new_rect = p_rect; @@ -282,13 +282,19 @@ struct [[nodiscard]] Rect2 { return Rect2(position + size.minf(0), size.abs()); } - Vector2 get_support(const Vector2 &p_normal) const { - Vector2 half_extents = size * 0.5f; - Vector2 ofs = position + half_extents; - return Vector2( - (p_normal.x > 0) ? -half_extents.x : half_extents.x, - (p_normal.y > 0) ? -half_extents.y : half_extents.y) + - ofs; + _FORCE_INLINE_ Rect2 round() const { + return Rect2(position.round(), size.round()); + } + + Vector2 get_support(const Vector2 &p_direction) const { + Vector2 support = position; + if (p_direction.x > 0.0f) { + support.x += size.x; + } + if (p_direction.y > 0.0f) { + support.y += size.y; + } + return support; } _FORCE_INLINE_ bool intersects_filled_polygon(const Vector2 *p_points, int p_point_count) const { @@ -304,14 +310,14 @@ struct [[nodiscard]] Rect2 { i_f = i; Vector2 r = (b - a); - float l = r.length(); + const real_t l = r.length(); if (l == 0.0f) { continue; } // Check inside. Vector2 tg = r.orthogonal(); - float s = tg.dot(center) - tg.dot(a); + const real_t s = tg.dot(center) - tg.dot(a); if (s < 0.0f) { side_plus++; } else { @@ -327,8 +333,8 @@ struct [[nodiscard]] Rect2 { Vector2 t13 = (position - a) * ir; Vector2 t24 = (end - a) * ir; - float tmin = Math::max(Math::min(t13.x, t24.x), Math::min(t13.y, t24.y)); - float tmax = Math::min(Math::max(t13.x, t24.x), Math::max(t13.y, t24.y)); + const real_t tmin = MAX(MIN(t13.x, t24.x), MIN(t13.y, t24.y)); + const real_t tmax = MIN(MAX(t13.x, t24.x), MAX(t13.y, t24.y)); // if tmax < 0, ray (line) is intersecting AABB, but the whole AABB is behind us if (tmax < 0 || tmin > tmax || tmin >= l) { diff --git a/include/godot_cpp/variant/rect2i.hpp b/include/godot_cpp/variant/rect2i.hpp index 94c340a89..0c593edeb 100644 --- a/include/godot_cpp/variant/rect2i.hpp +++ b/include/godot_cpp/variant/rect2i.hpp @@ -88,7 +88,7 @@ struct [[nodiscard]] Rect2i { return size.x > 0 && size.y > 0; } - // Returns the intersection between two Rect2is or an empty Rect2i if there is no intersection + // Returns the intersection between two Rect2is or an empty Rect2i if there is no intersection. inline Rect2i intersection(const Rect2i &p_rect) const { Rect2i new_rect = p_rect; diff --git a/include/godot_cpp/variant/transform2d.hpp b/include/godot_cpp/variant/transform2d.hpp index 5135d555e..9170e5688 100644 --- a/include/godot_cpp/variant/transform2d.hpp +++ b/include/godot_cpp/variant/transform2d.hpp @@ -39,21 +39,24 @@ namespace godot { class String; struct [[nodiscard]] Transform2D { - // Warning #1: basis of Transform2D is stored differently from Basis. In terms of columns array, the basis matrix looks like "on paper": + // WARNING: The basis of Transform2D is stored differently from Basis. + // In terms of columns array, the basis matrix looks like "on paper": // M = (columns[0][0] columns[1][0]) // (columns[0][1] columns[1][1]) - // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as columns[i]. - // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to columns[1][0] here. + // This is such that the columns, which can be interpreted as basis vectors + // of the coordinate system "painted" on the object, can be accessed as columns[i]. + // NOTE: This is the opposite of the indices in mathematical texts, + // meaning: $M_{12}$ in a math book corresponds to columns[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. - // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, - // and angle is measure from +X to +Y in a clockwise-fashion. + // WARNING: Be aware that unlike 3D code, 2D code uses a left-handed coordinate system: + // Y-axis points down, and angle is measure from +X to +Y in a clockwise-fashion. Vector2 columns[3]; - _FORCE_INLINE_ real_t tdotx(const Vector2 &v) const { return columns[0][0] * v.x + columns[1][0] * v.y; } - _FORCE_INLINE_ real_t tdoty(const Vector2 &v) const { return columns[0][1] * v.x + columns[1][1] * v.y; } + _FORCE_INLINE_ real_t tdotx(const Vector2 &p_v) const { return columns[0][0] * p_v.x + columns[1][0] * p_v.y; } + _FORCE_INLINE_ real_t tdoty(const Vector2 &p_v) const { return columns[0][1] * p_v.x + columns[1][1] * p_v.y; } const Vector2 &operator[](int p_idx) const { return columns[p_idx]; } Vector2 &operator[](int p_idx) { return columns[p_idx]; } @@ -64,20 +67,20 @@ struct [[nodiscard]] Transform2D { void affine_invert(); Transform2D affine_inverse() const; - void set_rotation(const real_t p_rot); + void set_rotation(real_t p_rot); real_t get_rotation() const; real_t get_skew() const; - void set_skew(const real_t p_angle); - _FORCE_INLINE_ void set_rotation_and_scale(const real_t p_rot, const Size2 &p_scale); - _FORCE_INLINE_ void set_rotation_scale_and_skew(const real_t p_rot, const Size2 &p_scale, const real_t p_skew); - void rotate(const real_t p_angle); + void set_skew(real_t p_angle); + _FORCE_INLINE_ void set_rotation_and_scale(real_t p_rot, const Size2 &p_scale); + _FORCE_INLINE_ void set_rotation_scale_and_skew(real_t p_rot, const Size2 &p_scale, real_t p_skew); + void rotate(real_t p_angle); void scale(const Size2 &p_scale); void scale_basis(const Size2 &p_scale); - void translate_local(const real_t p_tx, const real_t p_ty); + void translate_local(real_t p_tx, real_t p_ty); void translate_local(const Vector2 &p_translation); - real_t basis_determinant() const; + real_t determinant() const; Size2 get_scale() const; void set_scale(const Size2 &p_scale); @@ -85,18 +88,18 @@ struct [[nodiscard]] Transform2D { _FORCE_INLINE_ const Vector2 &get_origin() const { return columns[2]; } _FORCE_INLINE_ void set_origin(const Vector2 &p_origin) { columns[2] = p_origin; } - Transform2D basis_scaled(const Size2 &p_scale) const; Transform2D scaled(const Size2 &p_scale) const; Transform2D scaled_local(const Size2 &p_scale) const; Transform2D translated(const Vector2 &p_offset) const; Transform2D translated_local(const Vector2 &p_offset) const; - Transform2D rotated(const real_t p_angle) const; - Transform2D rotated_local(const real_t p_angle) const; + Transform2D rotated(real_t p_angle) const; + Transform2D rotated_local(real_t p_angle) const; Transform2D untranslated() const; void orthonormalize(); Transform2D orthonormalized() const; + bool is_conformal() const; bool is_equal_approx(const Transform2D &p_transform) const; bool is_finite() const; @@ -107,10 +110,12 @@ struct [[nodiscard]] Transform2D { void operator*=(const Transform2D &p_transform); Transform2D operator*(const Transform2D &p_transform) const; - void operator*=(const real_t p_val); - Transform2D operator*(const real_t p_val) const; + void operator*=(real_t p_val); + Transform2D operator*(real_t p_val) const; + void operator/=(real_t p_val); + Transform2D operator/(real_t p_val) const; - Transform2D interpolate_with(const Transform2D &p_transform, const real_t p_c) const; + Transform2D interpolate_with(const Transform2D &p_transform, real_t p_c) const; _FORCE_INLINE_ Vector2 basis_xform(const Vector2 &p_vec) const; _FORCE_INLINE_ Vector2 basis_xform_inv(const Vector2 &p_vec) const; @@ -123,13 +128,13 @@ struct [[nodiscard]] Transform2D { operator String() const; - Transform2D(const real_t xx, const real_t xy, const real_t yx, const real_t yy, const real_t ox, const real_t oy) { - columns[0][0] = xx; - columns[0][1] = xy; - columns[1][0] = yx; - columns[1][1] = yy; - columns[2][0] = ox; - columns[2][1] = oy; + Transform2D(real_t p_xx, real_t p_xy, real_t p_yx, real_t p_yy, real_t p_ox, real_t p_oy) { + columns[0][0] = p_xx; + columns[0][1] = p_xy; + columns[1][0] = p_yx; + columns[1][1] = p_yy; + columns[2][0] = p_ox; + columns[2][1] = p_oy; } Transform2D(const Vector2 &p_x, const Vector2 &p_y, const Vector2 &p_origin) { @@ -138,9 +143,9 @@ struct [[nodiscard]] Transform2D { columns[2] = p_origin; } - Transform2D(const real_t p_rot, const Vector2 &p_pos); + Transform2D(real_t p_rot, const Vector2 &p_pos); - Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos); + Transform2D(real_t p_rot, const Size2 &p_scale, real_t p_skew, const Vector2 &p_pos); Transform2D() { columns[0][0] = 1.0; @@ -188,14 +193,14 @@ Rect2 Transform2D::xform(const Rect2 &p_rect) const { return new_rect; } -void Transform2D::set_rotation_and_scale(const real_t p_rot, const Size2 &p_scale) { +void Transform2D::set_rotation_and_scale(real_t p_rot, const Size2 &p_scale) { columns[0][0] = Math::cos(p_rot) * p_scale.x; columns[1][1] = Math::cos(p_rot) * p_scale.y; columns[1][0] = -Math::sin(p_rot) * p_scale.y; columns[0][1] = Math::sin(p_rot) * p_scale.x; } -void Transform2D::set_rotation_scale_and_skew(const real_t p_rot, const Size2 &p_scale, const real_t p_skew) { +void Transform2D::set_rotation_scale_and_skew(real_t p_rot, const Size2 &p_scale, real_t p_skew) { columns[0][0] = Math::cos(p_rot) * p_scale.x; columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; diff --git a/include/godot_cpp/variant/transform3d.hpp b/include/godot_cpp/variant/transform3d.hpp index b0c1d2e7b..80392e396 100644 --- a/include/godot_cpp/variant/transform3d.hpp +++ b/include/godot_cpp/variant/transform3d.hpp @@ -54,8 +54,8 @@ struct [[nodiscard]] Transform3D { void rotate(const Vector3 &p_axis, real_t p_angle); void rotate_basis(const Vector3 &p_axis, real_t p_angle); - void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)); - Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)) const; + void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false); + Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false) const; void scale(const Vector3 &p_scale); Transform3D scaled(const Vector3 &p_scale) const; @@ -104,8 +104,10 @@ struct [[nodiscard]] Transform3D { void operator*=(const Transform3D &p_transform); Transform3D operator*(const Transform3D &p_transform) const; - void operator*=(const real_t p_val); - Transform3D operator*(const real_t p_val) const; + void operator*=(real_t p_val); + Transform3D operator*(real_t p_val) const; + void operator/=(real_t p_val); + Transform3D operator/(real_t p_val) const; Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const; @@ -115,11 +117,11 @@ struct [[nodiscard]] Transform3D { basis.xform(v)); } - void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { - basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz); - origin.x = tx; - origin.y = ty; - origin.z = tz; + void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz, real_t p_tx, real_t p_ty, real_t p_tz) { + basis.set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz); + origin.x = p_tx; + origin.y = p_ty; + origin.z = p_tz; } operator String() const; @@ -127,7 +129,7 @@ struct [[nodiscard]] Transform3D { Transform3D() {} Transform3D(const Basis &p_basis, const Vector3 &p_origin = Vector3()); Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin); - Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz); + Transform3D(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz, real_t p_ox, real_t p_oy, real_t p_oz); }; _FORCE_INLINE_ Vector3 Transform3D::xform(const Vector3 &p_vector) const { diff --git a/include/godot_cpp/variant/vector2.hpp b/include/godot_cpp/variant/vector2.hpp index 32004f01a..400bdeffe 100644 --- a/include/godot_cpp/variant/vector2.hpp +++ b/include/godot_cpp/variant/vector2.hpp @@ -61,13 +61,13 @@ struct [[nodiscard]] Vector2 { real_t coord[2] = { 0 }; }; - _FORCE_INLINE_ real_t &operator[](int p_idx) { - DEV_ASSERT((unsigned int)p_idx < 2); - return coord[p_idx]; + _FORCE_INLINE_ real_t &operator[](int p_axis) { + DEV_ASSERT((unsigned int)p_axis < 2); + return coord[p_axis]; } - _FORCE_INLINE_ const real_t &operator[](int p_idx) const { - DEV_ASSERT((unsigned int)p_idx < 2); - return coord[p_idx]; + _FORCE_INLINE_ const real_t &operator[](int p_axis) const { + DEV_ASSERT((unsigned int)p_axis < 2); + return coord[p_axis]; } _FORCE_INLINE_ Vector2::Axis min_axis_index() const { @@ -84,7 +84,7 @@ struct [[nodiscard]] Vector2 { real_t length() const; real_t length_squared() const; - Vector2 limit_length(const real_t p_len = 1.0) const; + Vector2 limit_length(real_t p_len = 1.0) const; Vector2 min(const Vector2 &p_vector2) const { return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y)); @@ -110,19 +110,20 @@ struct [[nodiscard]] Vector2 { real_t dot(const Vector2 &p_other) const; real_t cross(const Vector2 &p_other) const; - Vector2 posmod(const real_t p_mod) const; + Vector2 posmod(real_t p_mod) const; Vector2 posmodv(const Vector2 &p_modv) const; Vector2 project(const Vector2 &p_to) const; - Vector2 plane_project(const real_t p_d, const Vector2 &p_vec) const; + Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const; - _FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const; - _FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const; - _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const; - _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; - _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const; + _FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, real_t p_weight) const; + _FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, real_t p_weight) const; + _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const; + _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const; + _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const; + _FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const; - Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const; + Vector2 move_toward(const Vector2 &p_to, real_t p_delta) const; Vector2 slide(const Vector2 &p_normal) const; Vector2 bounce(const Vector2 &p_normal) const; @@ -138,16 +139,16 @@ struct [[nodiscard]] Vector2 { void operator-=(const Vector2 &p_v); Vector2 operator*(const Vector2 &p_v1) const; - Vector2 operator*(const real_t &rvalue) const; - void operator*=(const real_t &rvalue); - void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } + Vector2 operator*(real_t p_rvalue) const; + void operator*=(real_t p_rvalue); + void operator*=(const Vector2 &p_rvalue) { *this = *this * p_rvalue; } Vector2 operator/(const Vector2 &p_v1) const; - Vector2 operator/(const real_t &rvalue) const; + Vector2 operator/(real_t p_rvalue) const; - void operator/=(const real_t &rvalue); - void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; } + void operator/=(real_t p_rvalue); + void operator/=(const Vector2 &p_rvalue) { *this = *this / p_rvalue; } Vector2 operator-() const; @@ -160,13 +161,13 @@ struct [[nodiscard]] Vector2 { bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); } real_t angle() const; - static Vector2 from_angle(const real_t p_angle); + static Vector2 from_angle(real_t p_angle); _FORCE_INLINE_ Vector2 abs() const { return Vector2(Math::abs(x), Math::abs(y)); } - Vector2 rotated(const real_t p_by) const; + Vector2 rotated(real_t p_by) const; Vector2 orthogonal() const { return Vector2(y, -x); } @@ -185,13 +186,13 @@ struct [[nodiscard]] Vector2 { operator Vector2i() const; _FORCE_INLINE_ Vector2() {} - _FORCE_INLINE_ Vector2(const real_t p_x, const real_t p_y) { + _FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) { x = p_x; y = p_y; } }; -_FORCE_INLINE_ Vector2 Vector2::plane_project(const real_t p_d, const Vector2 &p_vec) const { +_FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const { return p_vec - *this * (dot(p_vec) - p_d); } @@ -217,26 +218,26 @@ _FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const { return Vector2(x * p_v1.x, y * p_v1.y); } -_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const { - return Vector2(x * rvalue, y * rvalue); +_FORCE_INLINE_ Vector2 Vector2::operator*(real_t p_rvalue) const { + return Vector2(x * p_rvalue, y * p_rvalue); } -_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) { - x *= rvalue; - y *= rvalue; +_FORCE_INLINE_ void Vector2::operator*=(real_t p_rvalue) { + x *= p_rvalue; + y *= p_rvalue; } _FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const { return Vector2(x / p_v1.x, y / p_v1.y); } -_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const { - return Vector2(x / rvalue, y / rvalue); +_FORCE_INLINE_ Vector2 Vector2::operator/(real_t p_rvalue) const { + return Vector2(x / p_rvalue, y / p_rvalue); } -_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) { - x /= rvalue; - y /= rvalue; +_FORCE_INLINE_ void Vector2::operator/=(real_t p_rvalue) { + x /= p_rvalue; + y /= p_rvalue; } _FORCE_INLINE_ Vector2 Vector2::operator-() const { @@ -251,16 +252,14 @@ _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const { return x != p_vec2.x || y != p_vec2.y; } -Vector2 Vector2::lerp(const Vector2 &p_to, const real_t p_weight) const { +Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const { Vector2 res = *this; - - res.x += (p_weight * (p_to.x - x)); - res.y += (p_weight * (p_to.y - y)); - + res.x = Math::lerp(res.x, p_to.x, p_weight); + res.y = Math::lerp(res.y, p_to.y, p_weight); return res; } -Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const { +Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const { real_t start_length_sq = length_squared(); real_t end_length_sq = p_to.length_squared(); if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) { @@ -273,31 +272,32 @@ Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const { return rotated(angle * p_weight) * (result_length / start_length); } -Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const { +Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const { Vector2 res = *this; res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight); res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight); return res; } -Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const { Vector2 res = *this; res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); return res; } -Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const { +Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const { Vector2 res = *this; + res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); + res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); + return res; +} - /* Formula from Wikipedia article on Bezier curves. */ - real_t omt = (1.0 - p_t); - real_t omt2 = omt * omt; - real_t omt3 = omt2 * omt; - real_t t2 = p_t * p_t; - real_t t3 = t2 * p_t; - - return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; +Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const { + Vector2 res = *this; + res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); + res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); + return res; } Vector2 Vector2::direction_to(const Vector2 &p_to) const { @@ -309,19 +309,19 @@ Vector2 Vector2::direction_to(const Vector2 &p_to) const { // Multiplication operators required to workaround issues with LLVM using implicit conversion // to Vector2i instead for integers where it should not. -_FORCE_INLINE_ Vector2 operator*(const float p_scalar, const Vector2 &p_vec) { +_FORCE_INLINE_ Vector2 operator*(float p_scalar, const Vector2 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector2 operator*(const double p_scalar, const Vector2 &p_vec) { +_FORCE_INLINE_ Vector2 operator*(double p_scalar, const Vector2 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector2 operator*(const int32_t p_scalar, const Vector2 &p_vec) { +_FORCE_INLINE_ Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector2 operator*(const int64_t p_scalar, const Vector2 &p_vec) { +_FORCE_INLINE_ Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) { return p_vec * p_scalar; } diff --git a/include/godot_cpp/variant/vector2i.hpp b/include/godot_cpp/variant/vector2i.hpp index 73a121a48..3278af9f1 100644 --- a/include/godot_cpp/variant/vector2i.hpp +++ b/include/godot_cpp/variant/vector2i.hpp @@ -61,13 +61,13 @@ struct [[nodiscard]] Vector2i { int32_t coord[2] = { 0 }; }; - _FORCE_INLINE_ int32_t &operator[](int p_idx) { - DEV_ASSERT((unsigned int)p_idx < 2); - return coord[p_idx]; + _FORCE_INLINE_ int32_t &operator[](int p_axis) { + DEV_ASSERT((unsigned int)p_axis < 2); + return coord[p_axis]; } - _FORCE_INLINE_ const int32_t &operator[](int p_idx) const { - DEV_ASSERT((unsigned int)p_idx < 2); - return coord[p_idx]; + _FORCE_INLINE_ const int32_t &operator[](int p_axis) const { + DEV_ASSERT((unsigned int)p_axis < 2); + return coord[p_axis]; } _FORCE_INLINE_ Vector2i::Axis min_axis_index() const { @@ -94,22 +94,30 @@ struct [[nodiscard]] Vector2i { return Vector2i(MAX(x, p_scalar), MAX(y, p_scalar)); } + double distance_to(const Vector2i &p_to) const { + return (p_to - *this).length(); + } + + int64_t distance_squared_to(const Vector2i &p_to) const { + return (p_to - *this).length_squared(); + } + Vector2i operator+(const Vector2i &p_v) const; void operator+=(const Vector2i &p_v); Vector2i operator-(const Vector2i &p_v) const; void operator-=(const Vector2i &p_v); Vector2i operator*(const Vector2i &p_v1) const; - Vector2i operator*(const int32_t &rvalue) const; - void operator*=(const int32_t &rvalue); + Vector2i operator*(int32_t p_rvalue) const; + void operator*=(int32_t p_rvalue); Vector2i operator/(const Vector2i &p_v1) const; - Vector2i operator/(const int32_t &rvalue) const; - void operator/=(const int32_t &rvalue); + Vector2i operator/(int32_t p_rvalue) const; + void operator/=(int32_t p_rvalue); Vector2i operator%(const Vector2i &p_v1) const; - Vector2i operator%(const int32_t &rvalue) const; - void operator%=(const int32_t &rvalue); + Vector2i operator%(int32_t p_rvalue) const; + void operator%=(int32_t p_rvalue); Vector2i operator-() const; bool operator<(const Vector2i &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } @@ -124,22 +132,19 @@ struct [[nodiscard]] Vector2i { int64_t length_squared() const; double length() const; - int64_t distance_squared_to(const Vector2i &p_to) const; - double distance_to(const Vector2i &p_to) const; - real_t aspect() const { return width / (real_t)height; } Vector2i sign() const { return Vector2i(SIGN(x), SIGN(y)); } Vector2i abs() const { return Vector2i(Math::abs(x), Math::abs(y)); } - Vector2i snapped(const Vector2i &p_step) const; - Vector2i snappedi(int32_t p_step) const; Vector2i clamp(const Vector2i &p_min, const Vector2i &p_max) const; Vector2i clampi(int32_t p_min, int32_t p_max) const; + Vector2i snapped(const Vector2i &p_step) const; + Vector2i snappedi(int32_t p_step) const; operator String() const; operator Vector2() const; inline Vector2i() {} - inline Vector2i(const int32_t p_x, const int32_t p_y) { + inline Vector2i(int32_t p_x, int32_t p_y) { x = p_x; y = p_y; } @@ -147,19 +152,19 @@ struct [[nodiscard]] Vector2i { // Multiplication operators required to workaround issues with LLVM using implicit conversion. -_FORCE_INLINE_ Vector2i operator*(const int32_t p_scalar, const Vector2i &p_vector) { +_FORCE_INLINE_ Vector2i operator*(int32_t p_scalar, const Vector2i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector2i operator*(const int64_t p_scalar, const Vector2i &p_vector) { +_FORCE_INLINE_ Vector2i operator*(int64_t p_scalar, const Vector2i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector2i operator*(const float p_scalar, const Vector2i &p_vector) { +_FORCE_INLINE_ Vector2i operator*(float p_scalar, const Vector2i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector2i operator*(const double p_scalar, const Vector2i &p_vector) { +_FORCE_INLINE_ Vector2i operator*(double p_scalar, const Vector2i &p_vector) { return p_vector * p_scalar; } diff --git a/include/godot_cpp/variant/vector3.hpp b/include/godot_cpp/variant/vector3.hpp index f92d0209c..796daeca7 100644 --- a/include/godot_cpp/variant/vector3.hpp +++ b/include/godot_cpp/variant/vector3.hpp @@ -59,12 +59,12 @@ struct [[nodiscard]] Vector3 { real_t coord[3] = { 0 }; }; - _FORCE_INLINE_ const real_t &operator[](const int p_axis) const { + _FORCE_INLINE_ const real_t &operator[](int p_axis) const { DEV_ASSERT((unsigned int)p_axis < 3); return coord[p_axis]; } - _FORCE_INLINE_ real_t &operator[](const int p_axis) { + _FORCE_INLINE_ real_t &operator[](int p_axis) { DEV_ASSERT((unsigned int)p_axis < 3); return coord[p_axis]; } @@ -100,36 +100,38 @@ struct [[nodiscard]] Vector3 { _FORCE_INLINE_ Vector3 normalized() const; _FORCE_INLINE_ bool is_normalized() const; _FORCE_INLINE_ Vector3 inverse() const; - Vector3 limit_length(const real_t p_len = 1.0) const; + Vector3 limit_length(real_t p_len = 1.0) const; _FORCE_INLINE_ void zero(); - void snap(const Vector3 p_val); - void snapf(real_t p_val); - Vector3 snapped(const Vector3 p_val) const; - Vector3 snappedf(real_t p_val) const; + void snap(const Vector3 &p_step); + void snapf(real_t p_step); + Vector3 snapped(const Vector3 &p_step) const; + Vector3 snappedf(real_t p_step) const; - void rotate(const Vector3 &p_axis, const real_t p_angle); - Vector3 rotated(const Vector3 &p_axis, const real_t p_angle) const; + void rotate(const Vector3 &p_axis, real_t p_angle); + Vector3 rotated(const Vector3 &p_axis, real_t p_angle) const; /* Static Methods between 2 vector3s */ - _FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const; - _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const; - _FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const; - _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; - _FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const; + _FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, real_t p_weight) const; + _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, real_t p_weight) const; + _FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const; + _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const; + _FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, real_t p_t) const; + _FORCE_INLINE_ Vector3 bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, real_t p_t) const; - Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; + Vector3 move_toward(const Vector3 &p_to, real_t p_delta) const; Vector2 octahedron_encode() const; static Vector3 octahedron_decode(const Vector2 &p_oct); - Vector2 octahedron_tangent_encode(const float sign) const; - static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign); + Vector2 octahedron_tangent_encode(float p_sign) const; + static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *r_sign); _FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const; _FORCE_INLINE_ real_t dot(const Vector3 &p_with) const; Basis outer(const Vector3 &p_with) const; + _FORCE_INLINE_ Vector3 get_any_perpendicular() const; _FORCE_INLINE_ Vector3 abs() const; _FORCE_INLINE_ Vector3 floor() const; @@ -142,7 +144,7 @@ struct [[nodiscard]] Vector3 { _FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const; _FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const; - _FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const; + _FORCE_INLINE_ Vector3 posmod(real_t p_mod) const; _FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const; _FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const; @@ -169,10 +171,10 @@ struct [[nodiscard]] Vector3 { _FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v); _FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const; - _FORCE_INLINE_ Vector3 &operator*=(const real_t p_scalar); - _FORCE_INLINE_ Vector3 operator*(const real_t p_scalar) const; - _FORCE_INLINE_ Vector3 &operator/=(const real_t p_scalar); - _FORCE_INLINE_ Vector3 operator/(const real_t p_scalar) const; + _FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar); + _FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const; + _FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar); + _FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const; _FORCE_INLINE_ Vector3 operator-() const; @@ -187,7 +189,7 @@ struct [[nodiscard]] Vector3 { operator Vector3i() const; _FORCE_INLINE_ Vector3() {} - _FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) { + _FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) { x = p_x; y = p_y; z = p_z; @@ -227,14 +229,15 @@ Vector3 Vector3::round() const { return Vector3(Math::round(x), Math::round(y), Math::round(z)); } -Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const { - return Vector3( - x + (p_weight * (p_to.x - x)), - y + (p_weight * (p_to.y - y)), - z + (p_weight * (p_to.z - z))); +Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const { + Vector3 res = *this; + res.x = Math::lerp(res.x, p_to.x, p_weight); + res.y = Math::lerp(res.y, p_to.y, p_weight); + res.z = Math::lerp(res.z, p_to.z, p_weight); + return res; } -Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const { +Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const { // This method seems more complicated than it really is, since we write out // the internals of some methods for efficiency (mainly, checking length). real_t start_length_sq = length_squared(); @@ -256,7 +259,7 @@ Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const { return rotated(axis, angle * p_weight) * (result_length / start_length); } -Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const { +Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const { Vector3 res = *this; res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight); res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight); @@ -264,7 +267,7 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c return res; } -Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const { Vector3 res = *this; res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); @@ -272,17 +275,20 @@ Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_ return res; } -Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const { +Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, real_t p_t) const { Vector3 res = *this; + res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); + res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); + res.z = Math::bezier_interpolate(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t); + return res; +} - /* Formula from Wikipedia article on Bezier curves. */ - real_t omt = (1.0 - p_t); - real_t omt2 = omt * omt; - real_t omt3 = omt2 * omt; - real_t t2 = p_t * p_t; - real_t t3 = t2 * p_t; - - return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; +Vector3 Vector3::bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, real_t p_t) const { + Vector3 res = *this; + res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); + res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); + res.z = Math::bezier_derivative(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t); + return res; } real_t Vector3::distance_to(const Vector3 &p_to) const { @@ -293,7 +299,7 @@ real_t Vector3::distance_squared_to(const Vector3 &p_to) const { return (p_to - *this).length_squared(); } -Vector3 Vector3::posmod(const real_t p_mod) const { +Vector3 Vector3::posmod(real_t p_mod) const { return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod)); } @@ -322,6 +328,16 @@ Vector3 Vector3::direction_to(const Vector3 &p_to) const { return ret; } +Vector3 Vector3::get_any_perpendicular() const { + // Return the any perpendicular vector by cross product with the Vector3.RIGHT or Vector3.UP, + // whichever has the greater angle to the current vector with the sign of each element positive. + // The only essence is "to avoid being parallel to the current vector", and there is no mathematical basis for using Vector3.RIGHT and Vector3.UP, + // since it could be a different vector depending on the prior branching code Math::abs(x) <= Math::abs(y) && Math::abs(x) <= Math::abs(z). + // However, it would be reasonable to use any of the axes of the basis, as it is simpler to calculate. + ERR_FAIL_COND_V_MSG(is_zero_approx(), Vector3(0, 0, 0), "The Vector3 must not be zero."); + return cross((Math::abs(x) <= Math::abs(y) && Math::abs(x) <= Math::abs(z)) ? Vector3(1, 0, 0) : Vector3(0, 1, 0)).normalized(); +} + /* Operators */ Vector3 &Vector3::operator+=(const Vector3 &p_v) { @@ -368,7 +384,7 @@ Vector3 Vector3::operator/(const Vector3 &p_v) const { return Vector3(x / p_v.x, y / p_v.y, z / p_v.z); } -Vector3 &Vector3::operator*=(const real_t p_scalar) { +Vector3 &Vector3::operator*=(real_t p_scalar) { x *= p_scalar; y *= p_scalar; z *= p_scalar; @@ -378,34 +394,34 @@ Vector3 &Vector3::operator*=(const real_t p_scalar) { // Multiplication operators required to workaround issues with LLVM using implicit conversion // to Vector3i instead for integers where it should not. -_FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) { +_FORCE_INLINE_ Vector3 operator*(float p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector3 operator*(const double p_scalar, const Vector3 &p_vec) { +_FORCE_INLINE_ Vector3 operator*(double p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector3 operator*(const int32_t p_scalar, const Vector3 &p_vec) { +_FORCE_INLINE_ Vector3 operator*(int32_t p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector3 operator*(const int64_t p_scalar, const Vector3 &p_vec) { +_FORCE_INLINE_ Vector3 operator*(int64_t p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } -Vector3 Vector3::operator*(const real_t p_scalar) const { +Vector3 Vector3::operator*(real_t p_scalar) const { return Vector3(x * p_scalar, y * p_scalar, z * p_scalar); } -Vector3 &Vector3::operator/=(const real_t p_scalar) { +Vector3 &Vector3::operator/=(real_t p_scalar) { x /= p_scalar; y /= p_scalar; z /= p_scalar; return *this; } -Vector3 Vector3::operator/(const real_t p_scalar) const { +Vector3 Vector3::operator/(real_t p_scalar) const { return Vector3(x / p_scalar, y / p_scalar, z / p_scalar); } @@ -519,9 +535,9 @@ void Vector3::zero() { // slide returns the component of the vector along the given plane, specified by its normal vector. Vector3 Vector3::slide(const Vector3 &p_normal) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized."); + ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 " + p_normal.operator String() + " must be normalized."); #endif - return *this - p_normal * this->dot(p_normal); + return *this - p_normal * dot(p_normal); } Vector3 Vector3::bounce(const Vector3 &p_normal) const { @@ -530,9 +546,9 @@ Vector3 Vector3::bounce(const Vector3 &p_normal) const { Vector3 Vector3::reflect(const Vector3 &p_normal) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized."); + ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 " + p_normal.operator String() + " must be normalized."); #endif - return 2.0f * p_normal * this->dot(p_normal) - *this; + return 2.0f * p_normal * dot(p_normal) - *this; } } // namespace godot diff --git a/include/godot_cpp/variant/vector3i.hpp b/include/godot_cpp/variant/vector3i.hpp index 15bc3bde7..2901b3665 100644 --- a/include/godot_cpp/variant/vector3i.hpp +++ b/include/godot_cpp/variant/vector3i.hpp @@ -57,12 +57,12 @@ struct [[nodiscard]] Vector3i { int32_t coord[3] = { 0 }; }; - _FORCE_INLINE_ const int32_t &operator[](const int p_axis) const { + _FORCE_INLINE_ const int32_t &operator[](int p_axis) const { DEV_ASSERT((unsigned int)p_axis < 3); return coord[p_axis]; } - _FORCE_INLINE_ int32_t &operator[](const int p_axis) { + _FORCE_INLINE_ int32_t &operator[](int p_axis) { DEV_ASSERT((unsigned int)p_axis < 3); return coord[p_axis]; } @@ -89,17 +89,17 @@ struct [[nodiscard]] Vector3i { _FORCE_INLINE_ int64_t length_squared() const; _FORCE_INLINE_ double length() const; - _FORCE_INLINE_ int64_t distance_squared_to(const Vector3i &p_to) const; - _FORCE_INLINE_ double distance_to(const Vector3i &p_to) const; - _FORCE_INLINE_ void zero(); _FORCE_INLINE_ Vector3i abs() const; _FORCE_INLINE_ Vector3i sign() const; - Vector3i snapped(const Vector3i &p_step) const; - Vector3i snappedi(int32_t p_step) const; Vector3i clamp(const Vector3i &p_min, const Vector3i &p_max) const; Vector3i clampi(int32_t p_min, int32_t p_max) const; + Vector3i snapped(const Vector3i &p_step) const; + Vector3i snappedi(int32_t p_step) const; + + _FORCE_INLINE_ double distance_to(const Vector3i &p_to) const; + _FORCE_INLINE_ int64_t distance_squared_to(const Vector3i &p_to) const; /* Operators */ @@ -114,12 +114,12 @@ struct [[nodiscard]] Vector3i { _FORCE_INLINE_ Vector3i &operator%=(const Vector3i &p_v); _FORCE_INLINE_ Vector3i operator%(const Vector3i &p_v) const; - _FORCE_INLINE_ Vector3i &operator*=(const int32_t p_scalar); - _FORCE_INLINE_ Vector3i operator*(const int32_t p_scalar) const; - _FORCE_INLINE_ Vector3i &operator/=(const int32_t p_scalar); - _FORCE_INLINE_ Vector3i operator/(const int32_t p_scalar) const; - _FORCE_INLINE_ Vector3i &operator%=(const int32_t p_scalar); - _FORCE_INLINE_ Vector3i operator%(const int32_t p_scalar) const; + _FORCE_INLINE_ Vector3i &operator*=(int32_t p_scalar); + _FORCE_INLINE_ Vector3i operator*(int32_t p_scalar) const; + _FORCE_INLINE_ Vector3i &operator/=(int32_t p_scalar); + _FORCE_INLINE_ Vector3i operator/(int32_t p_scalar) const; + _FORCE_INLINE_ Vector3i &operator%=(int32_t p_scalar); + _FORCE_INLINE_ Vector3i operator%(int32_t p_scalar) const; _FORCE_INLINE_ Vector3i operator-() const; @@ -134,7 +134,7 @@ struct [[nodiscard]] Vector3i { operator Vector3() const; _FORCE_INLINE_ Vector3i() {} - _FORCE_INLINE_ Vector3i(const int32_t p_x, const int32_t p_y, const int32_t p_z) { + _FORCE_INLINE_ Vector3i(int32_t p_x, int32_t p_y, int32_t p_z) { x = p_x; y = p_y; z = p_z; @@ -149,14 +149,6 @@ double Vector3i::length() const { return Math::sqrt((double)length_squared()); } -int64_t Vector3i::distance_squared_to(const Vector3i &p_to) const { - return (p_to - *this).length_squared(); -} - -double Vector3i::distance_to(const Vector3i &p_to) const { - return (p_to - *this).length(); -} - Vector3i Vector3i::abs() const { return Vector3i(Math::abs(x), Math::abs(y), Math::abs(z)); } @@ -165,6 +157,14 @@ Vector3i Vector3i::sign() const { return Vector3i(SIGN(x), SIGN(y), SIGN(z)); } +double Vector3i::distance_to(const Vector3i &p_to) const { + return (p_to - *this).length(); +} + +int64_t Vector3i::distance_squared_to(const Vector3i &p_to) const { + return (p_to - *this).length_squared(); +} + /* Operators */ Vector3i &Vector3i::operator+=(const Vector3i &p_v) { @@ -222,54 +222,54 @@ Vector3i Vector3i::operator%(const Vector3i &p_v) const { return Vector3i(x % p_v.x, y % p_v.y, z % p_v.z); } -Vector3i &Vector3i::operator*=(const int32_t p_scalar) { +Vector3i &Vector3i::operator*=(int32_t p_scalar) { x *= p_scalar; y *= p_scalar; z *= p_scalar; return *this; } -Vector3i Vector3i::operator*(const int32_t p_scalar) const { +Vector3i Vector3i::operator*(int32_t p_scalar) const { return Vector3i(x * p_scalar, y * p_scalar, z * p_scalar); } // Multiplication operators required to workaround issues with LLVM using implicit conversion. -_FORCE_INLINE_ Vector3i operator*(const int32_t p_scalar, const Vector3i &p_vector) { +_FORCE_INLINE_ Vector3i operator*(int32_t p_scalar, const Vector3i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector3i operator*(const int64_t p_scalar, const Vector3i &p_vector) { +_FORCE_INLINE_ Vector3i operator*(int64_t p_scalar, const Vector3i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector3i operator*(const float p_scalar, const Vector3i &p_vector) { +_FORCE_INLINE_ Vector3i operator*(float p_scalar, const Vector3i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector3i operator*(const double p_scalar, const Vector3i &p_vector) { +_FORCE_INLINE_ Vector3i operator*(double p_scalar, const Vector3i &p_vector) { return p_vector * p_scalar; } -Vector3i &Vector3i::operator/=(const int32_t p_scalar) { +Vector3i &Vector3i::operator/=(int32_t p_scalar) { x /= p_scalar; y /= p_scalar; z /= p_scalar; return *this; } -Vector3i Vector3i::operator/(const int32_t p_scalar) const { +Vector3i Vector3i::operator/(int32_t p_scalar) const { return Vector3i(x / p_scalar, y / p_scalar, z / p_scalar); } -Vector3i &Vector3i::operator%=(const int32_t p_scalar) { +Vector3i &Vector3i::operator%=(int32_t p_scalar) { x %= p_scalar; y %= p_scalar; z %= p_scalar; return *this; } -Vector3i Vector3i::operator%(const int32_t p_scalar) const { +Vector3i Vector3i::operator%(int32_t p_scalar) const { return Vector3i(x % p_scalar, y % p_scalar, z % p_scalar); } diff --git a/include/godot_cpp/variant/vector4.hpp b/include/godot_cpp/variant/vector4.hpp index 1f5ff5595..3348f6111 100644 --- a/include/godot_cpp/variant/vector4.hpp +++ b/include/godot_cpp/variant/vector4.hpp @@ -36,6 +36,7 @@ namespace godot { class String; +struct Vector4i; struct [[nodiscard]] Vector4 { static const int AXIS_COUNT = 4; @@ -54,15 +55,14 @@ struct [[nodiscard]] Vector4 { real_t z; real_t w; }; - [[deprecated("Use coord instead")]] real_t components[4]; real_t coord[4] = { 0, 0, 0, 0 }; }; - _FORCE_INLINE_ real_t &operator[](const int p_axis) { + _FORCE_INLINE_ real_t &operator[](int p_axis) { DEV_ASSERT((unsigned int)p_axis < 4); return coord[p_axis]; } - _FORCE_INLINE_ const real_t &operator[](const int p_axis) const { + _FORCE_INLINE_ const real_t &operator[](int p_axis) const { DEV_ASSERT((unsigned int)p_axis < 4); return coord[p_axis]; } @@ -104,11 +104,11 @@ struct [[nodiscard]] Vector4 { Vector4 floor() const; Vector4 ceil() const; Vector4 round() const; - Vector4 lerp(const Vector4 &p_to, const real_t p_weight) const; - Vector4 cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight) const; - Vector4 cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; + Vector4 lerp(const Vector4 &p_to, real_t p_weight) const; + Vector4 cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, real_t p_weight) const; + Vector4 cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const; - Vector4 posmod(const real_t p_mod) const; + Vector4 posmod(real_t p_mod) const; Vector4 posmodv(const Vector4 &p_modv) const; void snap(const Vector4 &p_step); void snapf(real_t p_step); @@ -124,15 +124,15 @@ struct [[nodiscard]] Vector4 { _FORCE_INLINE_ void operator-=(const Vector4 &p_vec4); _FORCE_INLINE_ void operator*=(const Vector4 &p_vec4); _FORCE_INLINE_ void operator/=(const Vector4 &p_vec4); - _FORCE_INLINE_ void operator*=(const real_t &s); - _FORCE_INLINE_ void operator/=(const real_t &s); + _FORCE_INLINE_ void operator*=(real_t p_s); + _FORCE_INLINE_ void operator/=(real_t p_s); _FORCE_INLINE_ Vector4 operator+(const Vector4 &p_vec4) const; _FORCE_INLINE_ Vector4 operator-(const Vector4 &p_vec4) const; _FORCE_INLINE_ Vector4 operator*(const Vector4 &p_vec4) const; _FORCE_INLINE_ Vector4 operator/(const Vector4 &p_vec4) const; _FORCE_INLINE_ Vector4 operator-() const; - _FORCE_INLINE_ Vector4 operator*(const real_t &s) const; - _FORCE_INLINE_ Vector4 operator/(const real_t &s) const; + _FORCE_INLINE_ Vector4 operator*(real_t p_s) const; + _FORCE_INLINE_ Vector4 operator/(real_t p_s) const; _FORCE_INLINE_ bool operator==(const Vector4 &p_vec4) const; _FORCE_INLINE_ bool operator!=(const Vector4 &p_vec4) const; @@ -142,28 +142,14 @@ struct [[nodiscard]] Vector4 { _FORCE_INLINE_ bool operator<=(const Vector4 &p_vec4) const; operator String() const; + operator Vector4i() const; _FORCE_INLINE_ Vector4() {} - - _FORCE_INLINE_ Vector4(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : - x(p_x), - y(p_y), - z(p_z), - w(p_w) { - } - - Vector4(const Vector4 &p_vec4) : - x(p_vec4.x), - y(p_vec4.y), - z(p_vec4.z), - w(p_vec4.w) { - } - - void operator=(const Vector4 &p_vec4) { - x = p_vec4.x; - y = p_vec4.y; - z = p_vec4.z; - w = p_vec4.w; + _FORCE_INLINE_ Vector4(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { + x = p_x; + y = p_y; + z = p_z; + w = p_w; } }; @@ -202,15 +188,15 @@ void Vector4::operator/=(const Vector4 &p_vec4) { z /= p_vec4.z; w /= p_vec4.w; } -void Vector4::operator*=(const real_t &s) { - x *= s; - y *= s; - z *= s; - w *= s; +void Vector4::operator*=(real_t p_s) { + x *= p_s; + y *= p_s; + z *= p_s; + w *= p_s; } -void Vector4::operator/=(const real_t &s) { - *this *= 1.0f / s; +void Vector4::operator/=(real_t p_s) { + *this *= 1.0f / p_s; } Vector4 Vector4::operator+(const Vector4 &p_vec4) const { @@ -233,12 +219,12 @@ Vector4 Vector4::operator-() const { return Vector4(-x, -y, -z, -w); } -Vector4 Vector4::operator*(const real_t &s) const { - return Vector4(x * s, y * s, z * s, w * s); +Vector4 Vector4::operator*(real_t p_s) const { + return Vector4(x * p_s, y * p_s, z * p_s, w * p_s); } -Vector4 Vector4::operator/(const real_t &s) const { - return *this * (1.0f / s); +Vector4 Vector4::operator/(real_t p_s) const { + return *this * (1.0f / p_s); } bool Vector4::operator==(const Vector4 &p_vec4) const { @@ -301,19 +287,19 @@ bool Vector4::operator>=(const Vector4 &p_v) const { return x > p_v.x; } -_FORCE_INLINE_ Vector4 operator*(const float p_scalar, const Vector4 &p_vec) { +_FORCE_INLINE_ Vector4 operator*(float p_scalar, const Vector4 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector4 operator*(const double p_scalar, const Vector4 &p_vec) { +_FORCE_INLINE_ Vector4 operator*(double p_scalar, const Vector4 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector4 operator*(const int32_t p_scalar, const Vector4 &p_vec) { +_FORCE_INLINE_ Vector4 operator*(int32_t p_scalar, const Vector4 &p_vec) { return p_vec * p_scalar; } -_FORCE_INLINE_ Vector4 operator*(const int64_t p_scalar, const Vector4 &p_vec) { +_FORCE_INLINE_ Vector4 operator*(int64_t p_scalar, const Vector4 &p_vec) { return p_vec * p_scalar; } diff --git a/include/godot_cpp/variant/vector4i.hpp b/include/godot_cpp/variant/vector4i.hpp index 285feeaf9..1a7471af6 100644 --- a/include/godot_cpp/variant/vector4i.hpp +++ b/include/godot_cpp/variant/vector4i.hpp @@ -59,12 +59,12 @@ struct [[nodiscard]] Vector4i { int32_t coord[4] = { 0 }; }; - _FORCE_INLINE_ const int32_t &operator[](const int p_axis) const { + _FORCE_INLINE_ const int32_t &operator[](int p_axis) const { DEV_ASSERT((unsigned int)p_axis < 4); return coord[p_axis]; } - _FORCE_INLINE_ int32_t &operator[](const int p_axis) { + _FORCE_INLINE_ int32_t &operator[](int p_axis) { DEV_ASSERT((unsigned int)p_axis < 4); return coord[p_axis]; } @@ -91,17 +91,17 @@ struct [[nodiscard]] Vector4i { _FORCE_INLINE_ int64_t length_squared() const; _FORCE_INLINE_ double length() const; - _FORCE_INLINE_ int64_t distance_squared_to(const Vector4i &p_to) const; - _FORCE_INLINE_ double distance_to(const Vector4i &p_to) const; - _FORCE_INLINE_ void zero(); + _FORCE_INLINE_ double distance_to(const Vector4i &p_to) const; + _FORCE_INLINE_ int64_t distance_squared_to(const Vector4i &p_to) const; + _FORCE_INLINE_ Vector4i abs() const; _FORCE_INLINE_ Vector4i sign() const; - Vector4i snapped(const Vector4i &p_step) const; - Vector4i snappedi(int32_t p_step) const; Vector4i clamp(const Vector4i &p_min, const Vector4i &p_max) const; Vector4i clampi(int32_t p_min, int32_t p_max) const; + Vector4i snapped(const Vector4i &p_step) const; + Vector4i snappedi(int32_t p_step) const; /* Operators */ @@ -116,12 +116,12 @@ struct [[nodiscard]] Vector4i { _FORCE_INLINE_ Vector4i &operator%=(const Vector4i &p_v); _FORCE_INLINE_ Vector4i operator%(const Vector4i &p_v) const; - _FORCE_INLINE_ Vector4i &operator*=(const int32_t p_scalar); - _FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar) const; - _FORCE_INLINE_ Vector4i &operator/=(const int32_t p_scalar); - _FORCE_INLINE_ Vector4i operator/(const int32_t p_scalar) const; - _FORCE_INLINE_ Vector4i &operator%=(const int32_t p_scalar); - _FORCE_INLINE_ Vector4i operator%(const int32_t p_scalar) const; + _FORCE_INLINE_ Vector4i &operator*=(int32_t p_scalar); + _FORCE_INLINE_ Vector4i operator*(int32_t p_scalar) const; + _FORCE_INLINE_ Vector4i &operator/=(int32_t p_scalar); + _FORCE_INLINE_ Vector4i operator/(int32_t p_scalar) const; + _FORCE_INLINE_ Vector4i &operator%=(int32_t p_scalar); + _FORCE_INLINE_ Vector4i operator%(int32_t p_scalar) const; _FORCE_INLINE_ Vector4i operator-() const; @@ -137,7 +137,7 @@ struct [[nodiscard]] Vector4i { _FORCE_INLINE_ Vector4i() {} Vector4i(const Vector4 &p_vec4); - _FORCE_INLINE_ Vector4i(const int32_t p_x, const int32_t p_y, const int32_t p_z, const int32_t p_w) { + _FORCE_INLINE_ Vector4i(int32_t p_x, int32_t p_y, int32_t p_z, int32_t p_w) { x = p_x; y = p_y; z = p_z; @@ -153,20 +153,20 @@ double Vector4i::length() const { return Math::sqrt((double)length_squared()); } -int64_t Vector4i::distance_squared_to(const Vector4i &p_to) const { - return (p_to - *this).length_squared(); -} - double Vector4i::distance_to(const Vector4i &p_to) const { return (p_to - *this).length(); } +int64_t Vector4i::distance_squared_to(const Vector4i &p_to) const { + return (p_to - *this).length_squared(); +} + Vector4i Vector4i::abs() const { return Vector4i(Math::abs(x), Math::abs(y), Math::abs(z), Math::abs(w)); } Vector4i Vector4i::sign() const { - return Vector4i(Math::sign(x), Math::sign(y), Math::sign(z), Math::sign(w)); + return Vector4i(SIGN(x), SIGN(y), SIGN(z), SIGN(w)); } /* Operators */ @@ -231,7 +231,7 @@ Vector4i Vector4i::operator%(const Vector4i &p_v) const { return Vector4i(x % p_v.x, y % p_v.y, z % p_v.z, w % p_v.w); } -Vector4i &Vector4i::operator*=(const int32_t p_scalar) { +Vector4i &Vector4i::operator*=(int32_t p_scalar) { x *= p_scalar; y *= p_scalar; z *= p_scalar; @@ -239,29 +239,29 @@ Vector4i &Vector4i::operator*=(const int32_t p_scalar) { return *this; } -Vector4i Vector4i::operator*(const int32_t p_scalar) const { +Vector4i Vector4i::operator*(int32_t p_scalar) const { return Vector4i(x * p_scalar, y * p_scalar, z * p_scalar, w * p_scalar); } // Multiplication operators required to workaround issues with LLVM using implicit conversion. -_FORCE_INLINE_ Vector4i operator*(const int32_t p_scalar, const Vector4i &p_vector) { +_FORCE_INLINE_ Vector4i operator*(int32_t p_scalar, const Vector4i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector4i operator*(const int64_t p_scalar, const Vector4i &p_vector) { +_FORCE_INLINE_ Vector4i operator*(int64_t p_scalar, const Vector4i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector4i operator*(const float p_scalar, const Vector4i &p_vector) { +_FORCE_INLINE_ Vector4i operator*(float p_scalar, const Vector4i &p_vector) { return p_vector * p_scalar; } -_FORCE_INLINE_ Vector4i operator*(const double p_scalar, const Vector4i &p_vector) { +_FORCE_INLINE_ Vector4i operator*(double p_scalar, const Vector4i &p_vector) { return p_vector * p_scalar; } -Vector4i &Vector4i::operator/=(const int32_t p_scalar) { +Vector4i &Vector4i::operator/=(int32_t p_scalar) { x /= p_scalar; y /= p_scalar; z /= p_scalar; @@ -269,11 +269,11 @@ Vector4i &Vector4i::operator/=(const int32_t p_scalar) { return *this; } -Vector4i Vector4i::operator/(const int32_t p_scalar) const { +Vector4i Vector4i::operator/(int32_t p_scalar) const { return Vector4i(x / p_scalar, y / p_scalar, z / p_scalar, w / p_scalar); } -Vector4i &Vector4i::operator%=(const int32_t p_scalar) { +Vector4i &Vector4i::operator%=(int32_t p_scalar) { x %= p_scalar; y %= p_scalar; z %= p_scalar; @@ -281,7 +281,7 @@ Vector4i &Vector4i::operator%=(const int32_t p_scalar) { return *this; } -Vector4i Vector4i::operator%(const int32_t p_scalar) const { +Vector4i Vector4i::operator%(int32_t p_scalar) const { return Vector4i(x % p_scalar, y % p_scalar, z % p_scalar, w % p_scalar); } diff --git a/src/variant/aabb.cpp b/src/variant/aabb.cpp index ded17d2ba..c0ac63899 100644 --- a/src/variant/aabb.cpp +++ b/src/variant/aabb.cpp @@ -119,55 +119,75 @@ AABB AABB::intersection(const AABB &p_aabb) const { return AABB(min, max - min); } -bool AABB::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip, Vector3 *r_normal) const { +// Note that this routine returns the BACKTRACKED (i.e. behind the ray origin) +// intersection point + normal if INSIDE the AABB. +// The caller can therefore decide when INSIDE whether to use the +// backtracked intersection, or use p_from as the intersection, and +// carry on progressing without e.g. reflecting against the normal. +bool AABB::find_intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, bool &r_inside, Vector3 *r_intersection_point, Vector3 *r_normal) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); } #endif - Vector3 c1, c2; Vector3 end = position + size; - real_t near = -1e20; - real_t far = 1e20; + real_t tmin = -1e20; + real_t tmax = 1e20; int axis = 0; + // Make sure r_inside is always initialized, + // to prevent reading uninitialized data in the client code. + r_inside = false; + for (int i = 0; i < 3; i++) { if (p_dir[i] == 0) { if ((p_from[i] < position[i]) || (p_from[i] > end[i])) { return false; } } else { // ray not parallel to planes in this direction - c1[i] = (position[i] - p_from[i]) / p_dir[i]; - c2[i] = (end[i] - p_from[i]) / p_dir[i]; + real_t t1 = (position[i] - p_from[i]) / p_dir[i]; + real_t t2 = (end[i] - p_from[i]) / p_dir[i]; - if (c1[i] > c2[i]) { - SWAP(c1, c2); + if (t1 > t2) { + SWAP(t1, t2); } - if (c1[i] > near) { - near = c1[i]; + if (t1 >= tmin) { + tmin = t1; axis = i; } - if (c2[i] < far) { - far = c2[i]; + if (t2 < tmax) { + if (t2 < 0) { + return false; + } + tmax = t2; } - if ((near > far) || (far < 0)) { + if (tmin > tmax) { return false; } } } - if (r_clip) { - *r_clip = c1; + // Did the ray start from inside the box? + // In which case the intersection returned is the point of entry + // (behind the ray start) or the calling routine can use the ray origin as intersection point. + r_inside = tmin < 0; + + if (r_intersection_point) { + *r_intersection_point = p_from + p_dir * tmin; + + // Prevent float error by making sure the point is exactly + // on the AABB border on the relevant axis. + r_intersection_point->coord[axis] = (p_dir[axis] >= 0) ? position.coord[axis] : end.coord[axis]; } if (r_normal) { *r_normal = Vector3(); - (*r_normal)[axis] = p_dir[axis] ? -1 : 1; + (*r_normal)[axis] = (p_dir[axis] >= 0) ? -1 : 1; } return true; } -bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip, Vector3 *r_normal) const { +bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_intersection_point, Vector3 *r_normal) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) { ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size."); @@ -225,8 +245,8 @@ bool AABB::intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector *r_normal = normal; } - if (r_clip) { - *r_clip = p_from + rel * min; + if (r_intersection_point) { + *r_intersection_point = p_from + rel * min; } return true; @@ -412,7 +432,15 @@ Variant AABB::intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to Variant AABB::intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const { Vector3 inters; - if (intersects_ray(p_from, p_dir, &inters)) { + bool inside = false; + + if (find_intersects_ray(p_from, p_dir, inside, &inters)) { + // When inside the intersection point may be BEHIND the ray, + // so for general use we return the ray origin. + if (inside) { + return p_from; + } + return inters; } return Variant(); diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp index d8a991917..67cbb3aca 100644 --- a/src/variant/basis.cpp +++ b/src/variant/basis.cpp @@ -29,31 +29,17 @@ /**************************************************************************/ #include +#include #include #include +using namespace godot; + #define cofac(row1, col1, row2, col2) \ (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1]) namespace godot { -void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > (real_t)Math_SQRT12) { - // choose p in y-z plane - real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; - real_t k = 1.0f / Math::sqrt(a); - rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); - rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]); - } else { - // choose p in x-y plane - real_t a = p_z.x * p_z.x + p_z.y * p_z.y; - real_t k = 1.0f / Math::sqrt(a); - rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0); - rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k); - } - rows[2] = p_z; -} - void Basis::invert() { real_t co[3] = { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) @@ -107,13 +93,35 @@ Basis Basis::orthogonalized() const { return c; } +// Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale. +// See https://en.wikipedia.org/wiki/Orthogonal_basis bool Basis::is_orthogonal() const { - Basis identity; - Basis m = (*this) * transposed(); + const Vector3 x = get_column(0); + const Vector3 y = get_column(1); + const Vector3 z = get_column(2); + return Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); +} - return m.is_equal_approx(identity); +// Returns true if the basis vectors are orthonormal (orthogonal and normalized), so it has no scale, skew, or shear. +// See https://en.wikipedia.org/wiki/Orthonormal_basis +bool Basis::is_orthonormal() const { + const Vector3 x = get_column(0); + const Vector3 y = get_column(1); + const Vector3 z = get_column(2); + return Math::is_equal_approx(x.length_squared(), 1) && Math::is_equal_approx(y.length_squared(), 1) && Math::is_equal_approx(z.length_squared(), 1) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); } +// Returns true if the basis is conformal (orthogonal, uniform scale, preserves angles and distance ratios). +// See https://en.wikipedia.org/wiki/Conformal_linear_transformation +bool Basis::is_conformal() const { + const Vector3 x = get_column(0); + const Vector3 y = get_column(1); + const Vector3 z = get_column(2); + const real_t x_len_sq = x.length_squared(); + return Math::is_equal_approx(x_len_sq, y.length_squared()) && Math::is_equal_approx(x_len_sq, z.length_squared()) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z)); +} + +// Returns true if the basis only has diagonal elements, so it may only have scale or flip, but no rotation, skew, or shear. bool Basis::is_diagonal() const { return ( Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) && @@ -121,8 +129,9 @@ bool Basis::is_diagonal() const { Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1])); } +// Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip. bool Basis::is_rotation() const { - return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal(); + return is_conformal() && Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON); } #ifdef MATH_CHECKS @@ -257,29 +266,26 @@ void Basis::scale_orthogonal(const Vector3 &p_scale) { Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { Basis m = *this; Vector3 s = Vector3(-1, -1, -1) + p_scale; + bool sign = std::signbit(s.x + s.y + s.z); + Basis b = m.orthonormalized(); + s = b.xform_inv(s); Vector3 dots; - Basis b; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - dots[j] += s[i] * Math::abs(m.get_column(i).normalized().dot(b.get_column(j))); + dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); } } + if (sign != std::signbit(dots.x + dots.y + dots.z)) { + dots = -dots; + } m.scale_local(Vector3(1, 1, 1) + dots); return m; } -float Basis::get_uniform_scale() const { +real_t Basis::get_uniform_scale() const { return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; } -void Basis::make_scale_uniform() { - float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; - for (int i = 0; i < 3; i++) { - rows[i].normalize(); - rows[i] *= l; - } -} - Basis Basis::scaled_local(const Vector3 &p_scale) const { return (*this) * Basis::from_scale(p_scale); } @@ -291,7 +297,7 @@ Vector3 Basis::get_scale_abs() const { Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); } -Vector3 Basis::get_scale_local() const { +Vector3 Basis::get_scale_global() const { real_t det_sign = SIGN(determinant()); return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); } @@ -418,7 +424,7 @@ void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) real_t dot = p_start_direction.dot(p_end_direction); dot = CLAMP(dot, -1.0f, 1.0f); const real_t angle_rads = Math::acos(dot); - set_axis_angle(axis, angle_rads); + *this = Basis(axis, angle_rads) * (*this); } } @@ -453,8 +459,13 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons } Vector3 Basis::get_euler(EulerOrder p_order) const { + // This epsilon value results in angles within a +/- 0.04 degree range being simplified/truncated. + // Based on testing, this is the largest the epsilon can be without the angle truncation becoming + // visually noticeable. + const real_t epsilon = 0.00000025; + switch (p_order) { - case EULER_ORDER_XYZ: { + case EulerOrder::EULER_ORDER_XYZ: { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -464,8 +475,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { Vector3 euler; real_t sy = rows[0][2]; - if (sy < (1.0f - (real_t)CMP_EPSILON)) { - if (sy > -(1.0f - (real_t)CMP_EPSILON)) { + if (sy < (1.0f - epsilon)) { + if (sy > -(1.0f - epsilon)) { // is this a pure Y rotation? if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -489,7 +500,7 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { } return euler; } - case EULER_ORDER_XZY: { + case EulerOrder::EULER_ORDER_XZY: { // Euler angles in XZY convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -499,8 +510,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { Vector3 euler; real_t sz = rows[0][1]; - if (sz < (1.0f - (real_t)CMP_EPSILON)) { - if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + if (sz < (1.0f - epsilon)) { + if (sz > -(1.0f - epsilon)) { euler.x = Math::atan2(rows[2][1], rows[1][1]); euler.y = Math::atan2(rows[0][2], rows[0][0]); euler.z = Math::asin(-sz); @@ -518,7 +529,7 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { } return euler; } - case EULER_ORDER_YXZ: { + case EulerOrder::EULER_ORDER_YXZ: { // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -530,8 +541,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { real_t m12 = rows[1][2]; - if (m12 < (1 - (real_t)CMP_EPSILON)) { - if (m12 > -(1 - (real_t)CMP_EPSILON)) { + if (m12 < (1 - epsilon)) { + if (m12 > -(1 - epsilon)) { // is this a pure X rotation? if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) @@ -556,7 +567,7 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { return euler; } - case EULER_ORDER_YZX: { + case EulerOrder::EULER_ORDER_YZX: { // Euler angles in YZX convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -566,8 +577,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { Vector3 euler; real_t sz = rows[1][0]; - if (sz < (1.0f - (real_t)CMP_EPSILON)) { - if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + if (sz < (1.0f - epsilon)) { + if (sz > -(1.0f - epsilon)) { euler.x = Math::atan2(-rows[1][2], rows[1][1]); euler.y = Math::atan2(-rows[2][0], rows[0][0]); euler.z = Math::asin(sz); @@ -584,8 +595,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { euler.z = Math_PI / 2.0f; } return euler; - } - case EULER_ORDER_ZXY: { + } break; + case EulerOrder::EULER_ORDER_ZXY: { // Euler angles in ZXY convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -594,8 +605,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // -cx*sy sx cx*cy Vector3 euler; real_t sx = rows[2][1]; - if (sx < (1.0f - (real_t)CMP_EPSILON)) { - if (sx > -(1.0f - (real_t)CMP_EPSILON)) { + if (sx < (1.0f - epsilon)) { + if (sx > -(1.0f - epsilon)) { euler.x = Math::asin(sx); euler.y = Math::atan2(-rows[2][0], rows[2][2]); euler.z = Math::atan2(-rows[0][1], rows[1][1]); @@ -612,8 +623,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { euler.z = 0; } return euler; - } - case EULER_ORDER_ZYX: { + } break; + case EulerOrder::EULER_ORDER_ZYX: { // Euler angles in ZYX convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // @@ -622,8 +633,8 @@ Vector3 Basis::get_euler(EulerOrder p_order) const { // -sy cy*sx cy*cx Vector3 euler; real_t sy = rows[2][0]; - if (sy < (1.0f - (real_t)CMP_EPSILON)) { - if (sy > -(1.0f - (real_t)CMP_EPSILON)) { + if (sy < (1.0f - epsilon)) { + if (sy > -(1.0f - epsilon)) { euler.x = Math::atan2(rows[2][1], rows[2][2]); euler.y = Math::asin(-sy); euler.z = Math::atan2(rows[1][0], rows[0][0]); @@ -664,26 +675,26 @@ void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); switch (p_order) { - case EULER_ORDER_XYZ: { + case EulerOrder::EULER_ORDER_XYZ: { *this = xmat * (ymat * zmat); } break; - case EULER_ORDER_XZY: { + case EulerOrder::EULER_ORDER_XZY: { *this = xmat * zmat * ymat; } break; - case EULER_ORDER_YXZ: { + case EulerOrder::EULER_ORDER_YXZ: { *this = ymat * xmat * zmat; } break; - case EULER_ORDER_YZX: { + case EulerOrder::EULER_ORDER_YZX: { *this = ymat * zmat * xmat; } break; - case EULER_ORDER_ZXY: { + case EulerOrder::EULER_ORDER_ZXY: { *this = zmat * xmat * ymat; } break; - case EULER_ORDER_ZYX: { + case EulerOrder::EULER_ORDER_ZYX: { *this = zmat * ymat * xmat; } break; default: { - ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)"); + ERR_FAIL_MSG("Invalid Euler order parameter."); } } } @@ -720,7 +731,7 @@ Basis::operator String() const { Quaternion Basis::get_quaternion() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors."); + ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis " + operator String() + " must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors."); #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; @@ -828,8 +839,8 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { z = (rows[1][0] - rows[0][1]) / s; r_axis = Vector3(x, y, z); - // CLAMP to avoid NaN if the value passed to acos is not in [0,1]. - r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0)); + // acos does clamping. + r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); } void Basis::set_quaternion(const Quaternion &p_quaternion) { @@ -847,7 +858,7 @@ void Basis::set_quaternion(const Quaternion &p_quaternion) { void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle #ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized."); #endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); real_t cosine = Math::cos(p_angle); @@ -905,7 +916,7 @@ void Basis::_set_diagonal(const Vector3 &p_diag) { rows[2][2] = p_diag.z; } -Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { +Basis Basis::lerp(const Basis &p_to, real_t p_weight) const { Basis b; b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); @@ -914,7 +925,7 @@ Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { return b; } -Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { +Basis Basis::slerp(const Basis &p_to, real_t p_weight) const { //consider scale Quaternion from(*this); Quaternion to(p_to); @@ -1047,9 +1058,10 @@ Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use v_z = -v_z; } Vector3 v_x = p_up.cross(v_z); -#ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other."); -#endif + if (v_x.is_zero_approx()) { + WARN_PRINT("Target and up vectors are colinear. This is not advised as it may cause unwanted rotation around local Z axis."); + v_x = p_up.get_any_perpendicular(); // Vectors are almost parallel. + } v_x.normalize(); Vector3 v_y = v_z.cross(v_x); diff --git a/src/variant/color.cpp b/src/variant/color.cpp index 4e3b870e2..1fb5211a5 100644 --- a/src/variant/color.cpp +++ b/src/variant/color.cpp @@ -29,6 +29,7 @@ /**************************************************************************/ #include +#include #include #include #include @@ -131,20 +132,20 @@ String _to_hex(float p_val) { String Color::to_html(bool p_alpha) const { String txt; - txt = txt + _to_hex(r); - txt = txt + _to_hex(g); - txt = txt + _to_hex(b); + txt += _to_hex(r); + txt += _to_hex(g); + txt += _to_hex(b); if (p_alpha) { - txt = txt + _to_hex(a); + txt += _to_hex(a); } return txt; } float Color::get_h() const { - float min = Math::min(r, g); - min = Math::min(min, b); - float max = Math::max(r, g); - max = Math::max(max, b); + float min = MIN(r, g); + min = MIN(min, b); + float max = MAX(r, g); + max = MAX(max, b); float delta = max - min; @@ -170,10 +171,10 @@ float Color::get_h() const { } float Color::get_s() const { - float min = Math::min(r, g); - min = Math::min(min, b); - float max = Math::max(r, g); - max = Math::max(max, b); + float min = MIN(r, g); + min = MIN(min, b); + float max = MAX(r, g); + max = MAX(max, b); float delta = max - min; @@ -181,8 +182,8 @@ float Color::get_s() const { } float Color::get_v() const { - float max = Math::max(r, g); - max = Math::max(max, b); + float max = MAX(r, g); + max = MAX(max, b); return max; } @@ -385,7 +386,6 @@ Color Color::named(const String &p_name) { int idx = find_named_color(p_name); if (idx == -1) { ERR_FAIL_V_MSG(Color(), "Invalid color name: " + p_name + "."); - return Color(); } return named_colors[idx].color; } @@ -400,7 +400,7 @@ Color Color::named(const String &p_name, const Color &p_default) { int Color::find_named_color(const String &p_name) { String name = p_name; - // Normalize name + // Normalize name. name = name.replace(" ", ""); name = name.replace("-", ""); name = name.replace("_", ""); @@ -408,23 +408,24 @@ int Color::find_named_color(const String &p_name) { name = name.replace(".", ""); name = name.to_upper(); - int idx = 0; - while (named_colors[idx].name != nullptr) { - if (name == String(named_colors[idx].name).replace("_", "")) { - return idx; + static HashMap named_colors_hashmap; + if (unlikely(named_colors_hashmap.is_empty())) { + const int named_color_count = get_named_color_count(); + for (int i = 0; i < named_color_count; i++) { + named_colors_hashmap[String(named_colors[i].name).replace("_", "")] = i; } - idx++; + } + + const HashMap::ConstIterator E = named_colors_hashmap.find(name); + if (E) { + return E->value; } return -1; } int Color::get_named_color_count() { - int idx = 0; - while (named_colors[idx].name != nullptr) { - idx++; - } - return idx; + return sizeof(named_colors) / sizeof(NamedColor); } String Color::get_named_color_name(int p_idx) { @@ -467,6 +468,10 @@ Color Color::from_rgbe9995(uint32_t p_rgbe) { return Color(rd, gd, bd, 1.0f); } +Color Color::from_rgba8(int64_t p_r8, int64_t p_g8, int64_t p_b8, int64_t p_a8) { + return Color(p_r8 / 255.0f, p_g8 / 255.0f, p_b8 / 255.0f, p_a8 / 255.0f); +} + Color::operator String() const { return "(" + String::num(r, 4) + ", " + String::num(g, 4) + ", " + String::num(b, 4) + ", " + String::num(a, 4) + ")"; } diff --git a/src/variant/plane.cpp b/src/variant/plane.cpp index caea516e1..05aadcaa9 100644 --- a/src/variant/plane.cpp +++ b/src/variant/plane.cpp @@ -60,7 +60,7 @@ Vector3 Plane::get_any_perpendicular_normal() const { static const Vector3 p2 = Vector3(0, 1, 0); Vector3 p; - if (Math::abs(normal.dot(p1)) > 0.99f) { // if too similar to p1 + if (ABS(normal.dot(p1)) > 0.99f) { // if too similar to p1 p = p2; // use p2 } else { p = p1; // use p1 @@ -100,13 +100,11 @@ bool Plane::intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 Vector3 segment = p_dir; real_t den = normal.dot(segment); - //printf("den is %i\n",den); if (Math::is_zero_approx(den)) { return false; } real_t dist = (normal.dot(p_from) - d) / den; - //printf("dist is %i\n",dist); if (dist > (real_t)CMP_EPSILON) { //this is a ray, before the emitting pos (p_from) doesn't exist @@ -123,13 +121,11 @@ bool Plane::intersects_segment(const Vector3 &p_begin, const Vector3 &p_end, Vec Vector3 segment = p_begin - p_end; real_t den = normal.dot(segment); - //printf("den is %i\n",den); if (Math::is_zero_approx(den)) { return false; } real_t dist = (normal.dot(p_begin) - d) / den; - //printf("dist is %i\n",dist); if (dist < (real_t)-CMP_EPSILON || dist > (1.0f + (real_t)CMP_EPSILON)) { return false; diff --git a/src/variant/projection.cpp b/src/variant/projection.cpp index ddedc93f9..e983cd204 100644 --- a/src/variant/projection.cpp +++ b/src/variant/projection.cpp @@ -39,7 +39,7 @@ namespace godot { -float Projection::determinant() const { +real_t Projection::determinant() const { return columns[0][3] * columns[1][2] * columns[2][1] * columns[3][0] - columns[0][2] * columns[1][3] * columns[2][1] * columns[3][0] - columns[0][3] * columns[1][1] * columns[2][2] * columns[3][0] + columns[0][1] * columns[1][3] * columns[2][2] * columns[3][0] + columns[0][2] * columns[1][1] * columns[2][3] * columns[3][0] - columns[0][1] * columns[1][2] * columns[2][3] * columns[3][0] - @@ -171,7 +171,7 @@ Projection Projection::perspective_znear_adjusted(real_t p_new_znear) const { } Plane Projection::get_projection_plane(Planes p_plane) const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; switch (p_plane) { case PLANE_NEAR: { @@ -404,20 +404,19 @@ void Projection::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, r } real_t Projection::get_z_far() const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; Plane new_plane = Plane(matrix[3] - matrix[2], matrix[7] - matrix[6], matrix[11] - matrix[10], matrix[15] - matrix[14]); - new_plane.normal = -new_plane.normal; new_plane.normalize(); return new_plane.d; } real_t Projection::get_z_near() const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; Plane new_plane = Plane(matrix[3] + matrix[2], matrix[7] + matrix[6], matrix[11] + matrix[10], @@ -428,7 +427,7 @@ real_t Projection::get_z_near() const { } Vector2 Projection::get_viewport_half_extents() const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; ///////--- Near Plane ---/////// Plane near_plane = Plane(matrix[3] + matrix[2], matrix[7] + matrix[6], @@ -456,7 +455,7 @@ Vector2 Projection::get_viewport_half_extents() const { } Vector2 Projection::get_far_plane_half_extents() const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; ///////--- Far Plane ---/////// Plane far_plane = Plane(matrix[3] - matrix[2], matrix[7] - matrix[6], @@ -484,7 +483,7 @@ Vector2 Projection::get_far_plane_half_extents() const { } bool Projection::get_endpoints(const Transform3D &p_transform, Vector3 *p_8points) const { - Array planes = get_projection_planes(Transform3D()); + Vector planes = get_projection_planes(Transform3D()); const Planes intersections[8][3] = { { PLANE_FAR, PLANE_LEFT, PLANE_TOP }, { PLANE_FAR, PLANE_LEFT, PLANE_BOTTOM }, @@ -509,17 +508,17 @@ bool Projection::get_endpoints(const Transform3D &p_transform, Vector3 *p_8point return true; } -Array Projection::get_projection_planes(const Transform3D &p_transform) const { +Vector Projection::get_projection_planes(const Transform3D &p_transform) const { /** Fast Plane Extraction from combined modelview/projection matrices. * References: * https://web.archive.org/web/20011221205252/https://www.markmorley.com/opengl/frustumculling.html * https://web.archive.org/web/20061020020112/https://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf */ - Array planes; + Vector planes; planes.resize(6); - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; Plane new_plane; @@ -532,7 +531,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[0] = p_transform.xform(new_plane); + planes.write[0] = p_transform.xform(new_plane); ///////--- Far Plane ---/////// new_plane = Plane(matrix[3] - matrix[2], @@ -543,7 +542,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[1] = p_transform.xform(new_plane); + planes.write[1] = p_transform.xform(new_plane); ///////--- Left Plane ---/////// new_plane = Plane(matrix[3] + matrix[0], @@ -554,7 +553,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[2] = p_transform.xform(new_plane); + planes.write[2] = p_transform.xform(new_plane); ///////--- Top Plane ---/////// new_plane = Plane(matrix[3] - matrix[1], @@ -565,7 +564,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[3] = p_transform.xform(new_plane); + planes.write[3] = p_transform.xform(new_plane); ///////--- Right Plane ---/////// new_plane = Plane(matrix[3] - matrix[0], @@ -576,7 +575,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[4] = p_transform.xform(new_plane); + planes.write[4] = p_transform.xform(new_plane); ///////--- Bottom Plane ---/////// new_plane = Plane(matrix[3] + matrix[1], @@ -587,7 +586,7 @@ Array Projection::get_projection_planes(const Transform3D &p_transform) const { new_plane.normal = -new_plane.normal; new_plane.normalize(); - planes[5] = p_transform.xform(new_plane); + planes.write[5] = p_transform.xform(new_plane); return planes; } @@ -599,101 +598,229 @@ Projection Projection::inverse() const { } void Projection::invert() { - int i, j, k; - int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */ - real_t pvt_val; /* Value of current pivot element */ - real_t hold; /* Temporary storage */ - real_t determinant = 1.0f; - for (k = 0; k < 4; k++) { - /** Locate k'th pivot element **/ - pvt_val = columns[k][k]; /** Initialize for search **/ - pvt_i[k] = k; - pvt_j[k] = k; - for (i = k; i < 4; i++) { - for (j = k; j < 4; j++) { - if (Math::abs(columns[i][j]) > Math::abs(pvt_val)) { - pvt_i[k] = i; - pvt_j[k] = j; - pvt_val = columns[i][j]; - } - } - } - - /** Product of pivots, gives determinant when finished **/ - determinant *= pvt_val; - if (Math::is_zero_approx(determinant)) { - return; /** Matrix is singular (zero determinant). **/ - } - - /** "Interchange" rows (with sign change stuff) **/ - i = pvt_i[k]; - if (i != k) { /** If rows are different **/ - for (j = 0; j < 4; j++) { - hold = -columns[k][j]; - columns[k][j] = columns[i][j]; - columns[i][j] = hold; - } - } - - /** "Interchange" columns **/ - j = pvt_j[k]; - if (j != k) { /** If columns are different **/ - for (i = 0; i < 4; i++) { - hold = -columns[i][k]; - columns[i][k] = columns[i][j]; - columns[i][j] = hold; - } - } - - /** Divide column by minus pivot value **/ - for (i = 0; i < 4; i++) { - if (i != k) { - columns[i][k] /= (-pvt_val); - } - } - - /** Reduce the matrix **/ - for (i = 0; i < 4; i++) { - hold = columns[i][k]; - for (j = 0; j < 4; j++) { - if (i != k && j != k) { - columns[i][j] += hold * columns[k][j]; - } - } - } - - /** Divide row by pivot **/ - for (j = 0; j < 4; j++) { - if (j != k) { - columns[k][j] /= pvt_val; - } - } - - /** Replace pivot by reciprocal (at last we can touch it). **/ - columns[k][k] = 1.0 / pvt_val; + // Adapted from Mesa's `src/util/u_math.c` `util_invert_mat4x4`. + // MIT licensed. Copyright 2008 VMware, Inc. Authored by Jacques Leroy. + Projection temp; + real_t *out = (real_t *)temp.columns; + real_t *m = (real_t *)columns; + + real_t wtmp[4][8]; + real_t m0, m1, m2, m3, s; + real_t *r0, *r1, *r2, *r3; + +#define MAT(m, r, c) (m)[(c) * 4 + (r)] + + r0 = wtmp[0]; + r1 = wtmp[1]; + r2 = wtmp[2]; + r3 = wtmp[3]; + + r0[0] = MAT(m, 0, 0); + r0[1] = MAT(m, 0, 1); + r0[2] = MAT(m, 0, 2); + r0[3] = MAT(m, 0, 3); + r0[4] = 1.0; + r0[5] = 0.0; + r0[6] = 0.0; + r0[7] = 0.0; + + r1[0] = MAT(m, 1, 0); + r1[1] = MAT(m, 1, 1); + r1[2] = MAT(m, 1, 2); + r1[3] = MAT(m, 1, 3); + r1[5] = 1.0; + r1[4] = 0.0; + r1[6] = 0.0; + r1[7] = 0.0; + + r2[0] = MAT(m, 2, 0); + r2[1] = MAT(m, 2, 1); + r2[2] = MAT(m, 2, 2); + r2[3] = MAT(m, 2, 3); + r2[6] = 1.0; + r2[4] = 0.0; + r2[5] = 0.0; + r2[7] = 0.0; + + r3[0] = MAT(m, 3, 0); + r3[1] = MAT(m, 3, 1); + r3[2] = MAT(m, 3, 2); + r3[3] = MAT(m, 3, 3); + + r3[7] = 1.0; + r3[4] = 0.0; + r3[5] = 0.0; + r3[6] = 0.0; + + /* choose pivot - or die */ + if (Math::abs(r3[0]) > Math::abs(r2[0])) { + SWAP(r3, r2); + } + if (Math::abs(r2[0]) > Math::abs(r1[0])) { + SWAP(r2, r1); + } + if (Math::abs(r1[0]) > Math::abs(r0[0])) { + SWAP(r1, r0); + } + ERR_FAIL_COND(0.0 == r0[0]); + + /* eliminate first variable */ + m1 = r1[0] / r0[0]; + m2 = r2[0] / r0[0]; + m3 = r3[0] / r0[0]; + s = r0[1]; + r1[1] -= m1 * s; + r2[1] -= m2 * s; + r3[1] -= m3 * s; + s = r0[2]; + r1[2] -= m1 * s; + r2[2] -= m2 * s; + r3[2] -= m3 * s; + s = r0[3]; + r1[3] -= m1 * s; + r2[3] -= m2 * s; + r3[3] -= m3 * s; + s = r0[4]; + if (s != 0.0) { + r1[4] -= m1 * s; + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r0[5]; + if (s != 0.0) { + r1[5] -= m1 * s; + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r0[6]; + if (s != 0.0) { + r1[6] -= m1 * s; + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r0[7]; + if (s != 0.0) { + r1[7] -= m1 * s; + r2[7] -= m2 * s; + r3[7] -= m3 * s; } - /* That was most of the work, one final pass of row/column interchange */ - /* to finish */ - for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/ - i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */ - if (i != k) { /* If rows are different */ - for (j = 0; j < 4; j++) { - hold = columns[k][j]; - columns[k][j] = -columns[i][j]; - columns[i][j] = hold; - } - } + /* choose pivot - or die */ + if (Math::abs(r3[1]) > Math::abs(r2[1])) { + SWAP(r3, r2); + } + if (Math::abs(r2[1]) > Math::abs(r1[1])) { + SWAP(r2, r1); + } + ERR_FAIL_COND(0.0 == r1[1]); + + /* eliminate second variable */ + m2 = r2[1] / r1[1]; + m3 = r3[1] / r1[1]; + r2[2] -= m2 * r1[2]; + r3[2] -= m3 * r1[2]; + r2[3] -= m2 * r1[3]; + r3[3] -= m3 * r1[3]; + s = r1[4]; + if (0.0 != s) { + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r1[5]; + if (0.0 != s) { + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r1[6]; + if (0.0 != s) { + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r1[7]; + if (0.0 != s) { + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } - j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */ - if (j != k) { /* If columns are different */ - for (i = 0; i < 4; i++) { - hold = columns[i][k]; - columns[i][k] = -columns[i][j]; - columns[i][j] = hold; - } - } + /* choose pivot - or die */ + if (Math::abs(r3[2]) > Math::abs(r2[2])) { + SWAP(r3, r2); } + ERR_FAIL_COND(0.0 == r2[2]); + + /* eliminate third variable */ + m3 = r3[2] / r2[2]; + r3[3] -= m3 * r2[3]; + r3[4] -= m3 * r2[4]; + r3[5] -= m3 * r2[5]; + r3[6] -= m3 * r2[6]; + r3[7] -= m3 * r2[7]; + + /* last check */ + ERR_FAIL_COND(0.0 == r3[3]); + + s = 1.0 / r3[3]; /* now back substitute row 3 */ + r3[4] *= s; + r3[5] *= s; + r3[6] *= s; + r3[7] *= s; + + m2 = r2[3]; /* now back substitute row 2 */ + s = 1.0 / r2[2]; + r2[4] = s * (r2[4] - r3[4] * m2); + r2[5] = s * (r2[5] - r3[5] * m2); + r2[6] = s * (r2[6] - r3[6] * m2); + r2[7] = s * (r2[7] - r3[7] * m2); + m1 = r1[3]; + r1[4] -= r3[4] * m1; + r1[5] -= r3[5] * m1; + r1[6] -= r3[6] * m1; + r1[7] -= r3[7] * m1; + m0 = r0[3]; + r0[4] -= r3[4] * m0; + r0[5] -= r3[5] * m0; + r0[6] -= r3[6] * m0; + r0[7] -= r3[7] * m0; + + m1 = r1[2]; /* now back substitute row 1 */ + s = 1.0 / r1[1]; + r1[4] = s * (r1[4] - r2[4] * m1); + r1[5] = s * (r1[5] - r2[5] * m1), + r1[6] = s * (r1[6] - r2[6] * m1); + r1[7] = s * (r1[7] - r2[7] * m1); + m0 = r0[2]; + r0[4] -= r2[4] * m0; + r0[5] -= r2[5] * m0; + r0[6] -= r2[6] * m0; + r0[7] -= r2[7] * m0; + + m0 = r0[1]; /* now back substitute row 0 */ + s = 1.0 / r0[0]; + r0[4] = s * (r0[4] - r1[4] * m0); + r0[5] = s * (r0[5] - r1[5] * m0), + r0[6] = s * (r0[6] - r1[6] * m0); + r0[7] = s * (r0[7] - r1[7] * m0); + + MAT(out, 0, 0) = r0[4]; + MAT(out, 0, 1) = r0[5]; + MAT(out, 0, 2) = r0[6]; + MAT(out, 0, 3) = r0[7]; + MAT(out, 1, 0) = r1[4]; + MAT(out, 1, 1) = r1[5]; + MAT(out, 1, 2) = r1[6]; + MAT(out, 1, 3) = r1[7]; + MAT(out, 2, 0) = r2[4]; + MAT(out, 2, 1) = r2[5]; + MAT(out, 2, 2) = r2[6]; + MAT(out, 2, 3) = r2[7]; + MAT(out, 3, 0) = r3[4]; + MAT(out, 3, 1) = r3[5]; + MAT(out, 3, 2) = r3[6]; + MAT(out, 3, 3) = r3[7]; + +#undef MAT + + *this = temp; } void Projection::flip_y() { @@ -722,7 +849,8 @@ Projection Projection::operator*(const Projection &p_matrix) const { return new_matrix; } -void Projection::set_depth_correction(bool p_flip_y) { +void Projection::set_depth_correction(bool p_flip_y, bool p_reverse_z, bool p_remap_z) { + // p_remap_z is used to convert from OpenGL-style clip space (-1 - 1) to Vulkan style (0 - 1). real_t *m = &columns[0][0]; m[0] = 1; @@ -735,11 +863,11 @@ void Projection::set_depth_correction(bool p_flip_y) { m[7] = 0.0; m[8] = 0.0; m[9] = 0.0; - m[10] = 0.5; + m[10] = p_remap_z ? (p_reverse_z ? -0.5 : 0.5) : (p_reverse_z ? -1.0 : 1.0); m[11] = 0.0; m[12] = 0.0; m[13] = 0.0; - m[14] = 0.5; + m[14] = p_remap_z ? 0.5 : 0.0; m[15] = 1.0; } @@ -786,14 +914,10 @@ void Projection::set_light_atlas_rect(const Rect2 &p_rect) { } Projection::operator String() const { - String str; - for (int i = 0; i < 4; i++) { - for (int j = 0; j < 4; j++) { - str = str + String((j > 0) ? ", " : "\n") + rtos(columns[i][j]); - } - } - - return str; + return "[X: " + columns[0].operator String() + + ", Y: " + columns[1].operator String() + + ", Z: " + columns[2].operator String() + + ", W: " + columns[3].operator String() + "]"; } real_t Projection::get_aspect() const { @@ -812,7 +936,7 @@ bool Projection::is_orthogonal() const { } real_t Projection::get_fov() const { - const real_t *matrix = (const real_t *)this->columns; + const real_t *matrix = (const real_t *)columns; Plane right_plane = Plane(matrix[3] - matrix[0], matrix[7] - matrix[4], @@ -834,13 +958,13 @@ real_t Projection::get_fov() const { } } -float Projection::get_lod_multiplier() const { +real_t Projection::get_lod_multiplier() const { if (is_orthogonal()) { return get_viewport_half_extents().x; } else { - float zn = get_z_near(); - float width = get_viewport_half_extents().x * 2.0; - return 1.0 / (zn / width); + const real_t zn = get_z_near(); + const real_t width = get_viewport_half_extents().x * 2.0f; + return 1.0f / (zn / width); } // Usage is lod_size / (lod_distance * multiplier) < threshold diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index 3dd7af54a..af75cf450 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -194,11 +194,11 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const post_q = Basis(post_q).get_rotation_quaternion(); // Flip quaternions to shortest path if necessary. - bool flip1 = Math::sign(from_q.dot(pre_q)); + bool flip1 = std::signbit(from_q.dot(pre_q)); pre_q = flip1 ? -pre_q : pre_q; - bool flip2 = Math::sign(from_q.dot(to_q)); + bool flip2 = std::signbit(from_q.dot(to_q)); to_q = flip2 ? -to_q : to_q; - bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : std::signbit(to_q.dot(post_q)); post_q = flip3 ? -post_q : post_q; // Calc by Expmap in from_q space. @@ -245,11 +245,11 @@ Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b post_q = Basis(post_q).get_rotation_quaternion(); // Flip quaternions to shortest path if necessary. - bool flip1 = Math::sign(from_q.dot(pre_q)); + bool flip1 = std::signbit(from_q.dot(pre_q)); pre_q = flip1 ? -pre_q : pre_q; - bool flip2 = Math::sign(from_q.dot(to_q)); + bool flip2 = std::signbit(from_q.dot(to_q)); to_q = flip2 ? -to_q : to_q; - bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : std::signbit(to_q.dot(post_q)); post_q = flip3 ? -post_q : post_q; // Calc by Expmap in from_q space. diff --git a/src/variant/rect2.cpp b/src/variant/rect2.cpp index 62730a9d4..7192a7111 100644 --- a/src/variant/rect2.cpp +++ b/src/variant/rect2.cpp @@ -211,31 +211,31 @@ bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_re real_t mina = maxa; real_t dp = p_xform.columns[0].dot(xf_points2[1]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); dp = p_xform.columns[0].dot(xf_points2[2]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); dp = p_xform.columns[0].dot(xf_points2[3]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); real_t maxb = p_xform.columns[0].dot(xf_points[0]); real_t minb = maxb; dp = p_xform.columns[0].dot(xf_points[1]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); dp = p_xform.columns[0].dot(xf_points[2]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); dp = p_xform.columns[0].dot(xf_points[3]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); if (mina > maxb) { return false; @@ -248,31 +248,31 @@ bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_re mina = maxa; dp = p_xform.columns[1].dot(xf_points2[1]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); dp = p_xform.columns[1].dot(xf_points2[2]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); dp = p_xform.columns[1].dot(xf_points2[3]); - maxa = Math::max(dp, maxa); - mina = Math::min(dp, mina); + maxa = MAX(dp, maxa); + mina = MIN(dp, mina); maxb = p_xform.columns[1].dot(xf_points[0]); minb = maxb; dp = p_xform.columns[1].dot(xf_points[1]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); dp = p_xform.columns[1].dot(xf_points[2]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); dp = p_xform.columns[1].dot(xf_points[3]); - maxb = Math::max(dp, maxb); - minb = Math::min(dp, minb); + maxb = MAX(dp, maxb); + minb = MIN(dp, minb); if (mina > maxb) { return false; @@ -285,7 +285,7 @@ bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_re } Rect2::operator String() const { - return "[P: " + position.operator String() + ", S: " + size + "]"; + return "[P: " + position.operator String() + ", S: " + size.operator String() + "]"; } Rect2::operator Rect2i() const { diff --git a/src/variant/transform2d.cpp b/src/variant/transform2d.cpp index 3b2c0b09e..b6b330bda 100644 --- a/src/variant/transform2d.cpp +++ b/src/variant/transform2d.cpp @@ -48,7 +48,7 @@ Transform2D Transform2D::inverse() const { } void Transform2D::affine_invert() { - real_t det = basis_determinant(); + real_t det = determinant(); #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif @@ -67,17 +67,17 @@ Transform2D Transform2D::affine_inverse() const { return inv; } -void Transform2D::rotate(const real_t p_angle) { +void Transform2D::rotate(real_t p_angle) { *this = Transform2D(p_angle, Vector2()) * (*this); } real_t Transform2D::get_skew() const { - real_t det = basis_determinant(); + real_t det = determinant(); return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f; } -void Transform2D::set_skew(const real_t p_angle) { - real_t det = basis_determinant(); +void Transform2D::set_skew(real_t p_angle) { + real_t det = determinant(); columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length(); } @@ -85,7 +85,7 @@ real_t Transform2D::get_rotation() const { return Math::atan2(columns[0].y, columns[0].x); } -void Transform2D::set_rotation(const real_t p_rot) { +void Transform2D::set_rotation(real_t p_rot) { Size2 scale = get_scale(); real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); @@ -96,7 +96,7 @@ void Transform2D::set_rotation(const real_t p_rot) { set_scale(scale); } -Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) { +Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); columns[0][0] = cr; @@ -106,7 +106,7 @@ Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) { columns[2] = p_pos; } -Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) { +Transform2D::Transform2D(real_t p_rot, const Size2 &p_scale, real_t p_skew, const Vector2 &p_pos) { columns[0][0] = Math::cos(p_rot) * p_scale.x; columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; @@ -115,7 +115,7 @@ Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t } Size2 Transform2D::get_scale() const { - real_t det_sign = Math::sign(basis_determinant()); + real_t det_sign = SIGN(determinant()); return Size2(columns[0].length(), det_sign * columns[1].length()); } @@ -138,7 +138,7 @@ void Transform2D::scale_basis(const Size2 &p_scale) { columns[1][1] *= p_scale.y; } -void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) { +void Transform2D::translate_local(real_t p_tx, real_t p_ty) { translate_local(Vector2(p_tx, p_ty)); } @@ -153,7 +153,7 @@ void Transform2D::orthonormalize() { Vector2 y = columns[1]; x.normalize(); - y = (y - x * (x.dot(y))); + y = y - x * x.dot(y); y.normalize(); columns[0] = x; @@ -161,9 +161,21 @@ void Transform2D::orthonormalize() { } Transform2D Transform2D::orthonormalized() const { - Transform2D on = *this; - on.orthonormalize(); - return on; + Transform2D ortho = *this; + ortho.orthonormalize(); + return ortho; +} + +bool Transform2D::is_conformal() const { + // Non-flipped case. + if (Math::is_equal_approx(columns[0][0], columns[1][1]) && Math::is_equal_approx(columns[0][1], -columns[1][0])) { + return true; + } + // Flipped case. + if (Math::is_equal_approx(columns[0][0], -columns[1][1]) && Math::is_equal_approx(columns[0][1], columns[1][0])) { + return true; + } + return false; } bool Transform2D::is_equal_approx(const Transform2D &p_transform) const { @@ -223,12 +235,6 @@ Transform2D Transform2D::operator*(const Transform2D &p_transform) const { return t; } -Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const { - Transform2D copy = *this; - copy.scale_basis(p_scale); - return copy; -} - Transform2D Transform2D::scaled(const Size2 &p_scale) const { // Equivalent to left multiplication Transform2D copy = *this; @@ -257,67 +263,52 @@ Transform2D Transform2D::translated_local(const Vector2 &p_offset) const { return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset)); } -Transform2D Transform2D::rotated(const real_t p_angle) const { +Transform2D Transform2D::rotated(real_t p_angle) const { // Equivalent to left multiplication return Transform2D(p_angle, Vector2()) * (*this); } -Transform2D Transform2D::rotated_local(const real_t p_angle) const { +Transform2D Transform2D::rotated_local(real_t p_angle) const { // Equivalent to right multiplication return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped. } -real_t Transform2D::basis_determinant() const { +real_t Transform2D::determinant() const { return columns[0].x * columns[1].y - columns[0].y * columns[1].x; } -Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_c) const { - //extract parameters - Vector2 p1 = get_origin(); - Vector2 p2 = p_transform.get_origin(); - - real_t r1 = get_rotation(); - real_t r2 = p_transform.get_rotation(); - - Size2 s1 = get_scale(); - Size2 s2 = p_transform.get_scale(); - - //slerp rotation - Vector2 v1(Math::cos(r1), Math::sin(r1)); - Vector2 v2(Math::cos(r2), Math::sin(r2)); - - real_t dot = v1.dot(v2); - - dot = Math::clamp(dot, (real_t)-1.0, (real_t)1.0); - - Vector2 v; - - if (dot > 0.9995f) { - v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues - } else { - real_t angle = p_c * Math::acos(dot); - Vector2 v3 = (v2 - v1 * dot).normalized(); - v = v1 * Math::cos(angle) + v3 * Math::sin(angle); - } - - //construct matrix - Transform2D res(v.angle(), p1.lerp(p2, p_c)); - res.scale_basis(s1.lerp(s2, p_c)); - return res; +Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_weight) const { + return Transform2D( + Math::lerp_angle(get_rotation(), p_transform.get_rotation(), p_weight), + get_scale().lerp(p_transform.get_scale(), p_weight), + Math::lerp_angle(get_skew(), p_transform.get_skew(), p_weight), + get_origin().lerp(p_transform.get_origin(), p_weight)); } -void Transform2D::operator*=(const real_t p_val) { +void Transform2D::operator*=(real_t p_val) { columns[0] *= p_val; columns[1] *= p_val; columns[2] *= p_val; } -Transform2D Transform2D::operator*(const real_t p_val) const { +Transform2D Transform2D::operator*(real_t p_val) const { Transform2D ret(*this); ret *= p_val; return ret; } +void Transform2D::operator/=(real_t p_val) { + columns[0] /= p_val; + columns[1] /= p_val; + columns[2] /= p_val; +} + +Transform2D Transform2D::operator/(real_t p_val) const { + Transform2D ret(*this); + ret /= p_val; + return ret; +} + Transform2D::operator String() const { return "[X: " + columns[0].operator String() + ", Y: " + columns[1].operator String() + diff --git a/src/variant/transform3d.cpp b/src/variant/transform3d.cpp index d71e91911..765bc62e7 100644 --- a/src/variant/transform3d.cpp +++ b/src/variant/transform3d.cpp @@ -78,20 +78,20 @@ void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) { basis.rotate(p_axis, p_angle); } -Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { +Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(origin.is_equal_approx(p_target), Transform3D(), "The transform's origin and target can't be equal."); #endif Transform3D t = *this; - t.basis = Basis::looking_at(p_target - origin, p_up); + t.basis = Basis::looking_at(p_target - origin, p_up, p_use_model_front); return t; } -void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { +void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(p_eye.is_equal_approx(p_target), "The eye and target vectors can't be equal."); #endif - basis = Basis::looking_at(p_target - p_eye, p_up); + basis = Basis::looking_at(p_target - p_eye, p_up, p_use_model_front); origin = p_eye; } @@ -198,17 +198,28 @@ Transform3D Transform3D::operator*(const Transform3D &p_transform) const { return t; } -void Transform3D::operator*=(const real_t p_val) { +void Transform3D::operator*=(real_t p_val) { origin *= p_val; basis *= p_val; } -Transform3D Transform3D::operator*(const real_t p_val) const { +Transform3D Transform3D::operator*(real_t p_val) const { Transform3D ret(*this); ret *= p_val; return ret; } +void Transform3D::operator/=(real_t p_val) { + basis /= p_val; + origin /= p_val; +} + +Transform3D Transform3D::operator/(real_t p_val) const { + Transform3D ret(*this); + ret /= p_val; + return ret; +} + Transform3D::operator String() const { return "[X: " + basis.get_column(0).operator String() + ", Y: " + basis.get_column(1).operator String() + @@ -228,9 +239,9 @@ Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 & basis.set_column(2, p_z); } -Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) { - basis = Basis(xx, xy, xz, yx, yy, yz, zx, zy, zz); - origin = Vector3(ox, oy, oz); +Transform3D::Transform3D(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz, real_t p_ox, real_t p_oy, real_t p_oz) { + basis = Basis(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz); + origin = Vector3(p_ox, p_oy, p_oz); } } // namespace godot diff --git a/src/variant/vector2.cpp b/src/variant/vector2.cpp index 12201f1fd..cb190db12 100644 --- a/src/variant/vector2.cpp +++ b/src/variant/vector2.cpp @@ -39,7 +39,7 @@ real_t Vector2::angle() const { return Math::atan2(y, x); } -Vector2 Vector2::from_angle(const real_t p_angle) { +Vector2 Vector2::from_angle(real_t p_angle) { return Vector2(Math::cos(p_angle), Math::sin(p_angle)); } @@ -111,7 +111,7 @@ Vector2 Vector2::round() const { return Vector2(Math::round(x), Math::round(y)); } -Vector2 Vector2::rotated(const real_t p_by) const { +Vector2 Vector2::rotated(real_t p_by) const { real_t sine = Math::sin(p_by); real_t cosi = Math::cos(p_by); return Vector2( @@ -119,7 +119,7 @@ Vector2 Vector2::rotated(const real_t p_by) const { x * sine + y * cosi); } -Vector2 Vector2::posmod(const real_t p_mod) const { +Vector2 Vector2::posmod(real_t p_mod) const { return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod)); } @@ -155,7 +155,7 @@ Vector2 Vector2::snappedf(real_t p_step) const { Math::snapped(y, p_step)); } -Vector2 Vector2::limit_length(const real_t p_len) const { +Vector2 Vector2::limit_length(real_t p_len) const { const real_t l = length(); Vector2 v = *this; if (l > 0 && p_len < l) { @@ -166,7 +166,7 @@ Vector2 Vector2::limit_length(const real_t p_len) const { return v; } -Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const { +Vector2 Vector2::move_toward(const Vector2 &p_to, real_t p_delta) const { Vector2 v = *this; Vector2 vd = p_to - v; real_t len = vd.length(); @@ -176,9 +176,9 @@ Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const { // slide returns the component of the vector along the given plane, specified by its normal vector. Vector2 Vector2::slide(const Vector2 &p_normal) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized."); + ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized."); #endif - return *this - p_normal * this->dot(p_normal); + return *this - p_normal * dot(p_normal); } Vector2 Vector2::bounce(const Vector2 &p_normal) const { @@ -187,9 +187,9 @@ Vector2 Vector2::bounce(const Vector2 &p_normal) const { Vector2 Vector2::reflect(const Vector2 &p_normal) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized."); + ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 " + p_normal.operator String() + "must be normalized."); #endif - return 2.0f * p_normal * this->dot(p_normal) - *this; + return 2.0f * p_normal * dot(p_normal) - *this; } bool Vector2::is_equal_approx(const Vector2 &p_v) const { @@ -205,7 +205,7 @@ bool Vector2::is_finite() const { } Vector2::operator String() const { - return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")"; + return "(" + String::num_real(x, true) + ", " + String::num_real(y, true) + ")"; } Vector2::operator Vector2i() const { diff --git a/src/variant/vector2i.cpp b/src/variant/vector2i.cpp index 4baff3bb3..d39cb7b4e 100644 --- a/src/variant/vector2i.cpp +++ b/src/variant/vector2i.cpp @@ -35,18 +35,6 @@ namespace godot { -Vector2i Vector2i::snapped(const Vector2i &p_step) const { - return Vector2i( - Math::snapped(x, p_step.x), - Math::snapped(y, p_step.y)); -} - -Vector2i Vector2i::snappedi(int32_t p_step) const { - return Vector2i( - Math::snapped(x, p_step), - Math::snapped(y, p_step)); -} - Vector2i Vector2i::clamp(const Vector2i &p_min, const Vector2i &p_max) const { return Vector2i( CLAMP(x, p_min.x, p_max.x), @@ -59,20 +47,24 @@ Vector2i Vector2i::clampi(int32_t p_min, int32_t p_max) const { CLAMP(y, p_min, p_max)); } -int64_t Vector2i::length_squared() const { - return x * (int64_t)x + y * (int64_t)y; +Vector2i Vector2i::snapped(const Vector2i &p_step) const { + return Vector2i( + Math::snapped(x, p_step.x), + Math::snapped(y, p_step.y)); } -double Vector2i::length() const { - return Math::sqrt((double)length_squared()); +Vector2i Vector2i::snappedi(int32_t p_step) const { + return Vector2i( + Math::snapped(x, p_step), + Math::snapped(y, p_step)); } -int64_t Vector2i::distance_squared_to(const Vector2i &p_to) const { - return (p_to - *this).length_squared(); +int64_t Vector2i::length_squared() const { + return x * (int64_t)x + y * (int64_t)y; } -double Vector2i::distance_to(const Vector2i &p_to) const { - return (p_to - *this).length(); +double Vector2i::length() const { + return Math::sqrt((double)length_squared()); } Vector2i Vector2i::operator+(const Vector2i &p_v) const { @@ -97,39 +89,39 @@ Vector2i Vector2i::operator*(const Vector2i &p_v1) const { return Vector2i(x * p_v1.x, y * p_v1.y); } -Vector2i Vector2i::operator*(const int32_t &rvalue) const { - return Vector2i(x * rvalue, y * rvalue); +Vector2i Vector2i::operator*(int32_t p_rvalue) const { + return Vector2i(x * p_rvalue, y * p_rvalue); } -void Vector2i::operator*=(const int32_t &rvalue) { - x *= rvalue; - y *= rvalue; +void Vector2i::operator*=(int32_t p_rvalue) { + x *= p_rvalue; + y *= p_rvalue; } Vector2i Vector2i::operator/(const Vector2i &p_v1) const { return Vector2i(x / p_v1.x, y / p_v1.y); } -Vector2i Vector2i::operator/(const int32_t &rvalue) const { - return Vector2i(x / rvalue, y / rvalue); +Vector2i Vector2i::operator/(int32_t p_rvalue) const { + return Vector2i(x / p_rvalue, y / p_rvalue); } -void Vector2i::operator/=(const int32_t &rvalue) { - x /= rvalue; - y /= rvalue; +void Vector2i::operator/=(int32_t p_rvalue) { + x /= p_rvalue; + y /= p_rvalue; } Vector2i Vector2i::operator%(const Vector2i &p_v1) const { return Vector2i(x % p_v1.x, y % p_v1.y); } -Vector2i Vector2i::operator%(const int32_t &rvalue) const { - return Vector2i(x % rvalue, y % rvalue); +Vector2i Vector2i::operator%(int32_t p_rvalue) const { + return Vector2i(x % p_rvalue, y % p_rvalue); } -void Vector2i::operator%=(const int32_t &rvalue) { - x %= rvalue; - y %= rvalue; +void Vector2i::operator%=(int32_t p_rvalue) { + x %= p_rvalue; + y %= p_rvalue; } Vector2i Vector2i::operator-() const { diff --git a/src/variant/vector3.cpp b/src/variant/vector3.cpp index d2ad6a9fa..fe42c189d 100644 --- a/src/variant/vector3.cpp +++ b/src/variant/vector3.cpp @@ -37,11 +37,11 @@ namespace godot { -void Vector3::rotate(const Vector3 &p_axis, const real_t p_angle) { +void Vector3::rotate(const Vector3 &p_axis, real_t p_angle) { *this = Basis(p_axis, p_angle).xform(*this); } -Vector3 Vector3::rotated(const Vector3 &p_axis, const real_t p_angle) const { +Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_angle) const { Vector3 r = *this; r.rotate(p_axis, p_angle); return r; @@ -61,31 +61,31 @@ Vector3 Vector3::clampf(real_t p_min, real_t p_max) const { CLAMP(z, p_min, p_max)); } -void Vector3::snap(const Vector3 p_step) { +void Vector3::snap(const Vector3 &p_step) { x = Math::snapped(x, p_step.x); y = Math::snapped(y, p_step.y); z = Math::snapped(z, p_step.z); } +Vector3 Vector3::snapped(const Vector3 &p_step) const { + Vector3 v = *this; + v.snap(p_step); + return v; +} + void Vector3::snapf(real_t p_step) { x = Math::snapped(x, p_step); y = Math::snapped(y, p_step); z = Math::snapped(z, p_step); } -Vector3 Vector3::snapped(const Vector3 p_step) const { - Vector3 v = *this; - v.snap(p_step); - return v; -} - Vector3 Vector3::snappedf(real_t p_step) const { Vector3 v = *this; v.snapf(p_step); return v; } -Vector3 Vector3::limit_length(const real_t p_len) const { +Vector3 Vector3::limit_length(real_t p_len) const { const real_t l = length(); Vector3 v = *this; if (l > 0 && p_len < l) { @@ -96,7 +96,7 @@ Vector3 Vector3::limit_length(const real_t p_len) const { return v; } -Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const { +Vector3 Vector3::move_toward(const Vector3 &p_to, real_t p_delta) const { Vector3 v = *this; Vector3 vd = p_to - v; real_t len = vd.length(); @@ -122,23 +122,25 @@ Vector2 Vector3::octahedron_encode() const { Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) { Vector2 f(p_oct.x * 2.0f - 1.0f, p_oct.y * 2.0f - 1.0f); Vector3 n(f.x, f.y, 1.0f - Math::abs(f.x) - Math::abs(f.y)); - float t = CLAMP(-n.z, 0.0f, 1.0f); + const real_t t = CLAMP(-n.z, 0.0f, 1.0f); n.x += n.x >= 0 ? -t : t; n.y += n.y >= 0 ? -t : t; return n.normalized(); } -Vector2 Vector3::octahedron_tangent_encode(const float sign) const { - Vector2 res = this->octahedron_encode(); +Vector2 Vector3::octahedron_tangent_encode(float p_sign) const { + const real_t bias = 1.0f / (real_t)32767.0f; + Vector2 res = octahedron_encode(); + res.y = MAX(res.y, bias); res.y = res.y * 0.5f + 0.5f; - res.y = sign >= 0.0f ? res.y : 1 - res.y; + res.y = p_sign >= 0.0f ? res.y : 1 - res.y; return res; } -Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *sign) { +Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *r_sign) { Vector2 oct_compressed = p_oct; oct_compressed.y = oct_compressed.y * 2 - 1; - *sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f; + *r_sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f; oct_compressed.y = Math::abs(oct_compressed.y); Vector3 res = Vector3::octahedron_decode(oct_compressed); return res; @@ -165,7 +167,7 @@ bool Vector3::is_finite() const { } Vector3::operator String() const { - return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ")"; + return "(" + String::num_real(x, true) + ", " + String::num_real(y, true) + ", " + String::num_real(z, true) + ")"; } Vector3::operator Vector3i() const { diff --git a/src/variant/vector3i.cpp b/src/variant/vector3i.cpp index 7b25d8979..a1e7213b9 100644 --- a/src/variant/vector3i.cpp +++ b/src/variant/vector3i.cpp @@ -35,20 +35,6 @@ namespace godot { -Vector3i Vector3i::snapped(const Vector3i &p_step) const { - return Vector3i( - Math::snapped(x, p_step.x), - Math::snapped(y, p_step.y), - Math::snapped(z, p_step.z)); -} - -Vector3i Vector3i::snappedi(int32_t p_step) const { - return Vector3i( - Math::snapped(x, p_step), - Math::snapped(y, p_step), - Math::snapped(z, p_step)); -} - Vector3i::Axis Vector3i::min_axis_index() const { return x < y ? (x < z ? Vector3i::AXIS_X : Vector3i::AXIS_Z) : (y < z ? Vector3i::AXIS_Y : Vector3i::AXIS_Z); } @@ -71,6 +57,20 @@ Vector3i Vector3i::clampi(int32_t p_min, int32_t p_max) const { CLAMP(z, p_min, p_max)); } +Vector3i Vector3i::snapped(const Vector3i &p_step) const { + return Vector3i( + Math::snapped(x, p_step.x), + Math::snapped(y, p_step.y), + Math::snapped(z, p_step.z)); +} + +Vector3i Vector3i::snappedi(int32_t p_step) const { + return Vector3i( + Math::snapped(x, p_step), + Math::snapped(y, p_step), + Math::snapped(z, p_step)); +} + Vector3i::operator String() const { return "(" + itos(x) + ", " + itos(y) + ", " + itos(z) + ")"; } diff --git a/src/variant/vector4.cpp b/src/variant/vector4.cpp index 2f1bb5926..9b58c9400 100644 --- a/src/variant/vector4.cpp +++ b/src/variant/vector4.cpp @@ -117,7 +117,7 @@ Vector4 Vector4::abs() const { } Vector4 Vector4::sign() const { - return Vector4(Math::sign(x), Math::sign(y), Math::sign(z), Math::sign(w)); + return Vector4(SIGN(x), SIGN(y), SIGN(z), SIGN(w)); } Vector4 Vector4::floor() const { @@ -132,15 +132,16 @@ Vector4 Vector4::round() const { return Vector4(Math::round(x), Math::round(y), Math::round(z), Math::round(w)); } -Vector4 Vector4::lerp(const Vector4 &p_to, const real_t p_weight) const { - return Vector4( - x + (p_weight * (p_to.x - x)), - y + (p_weight * (p_to.y - y)), - z + (p_weight * (p_to.z - z)), - w + (p_weight * (p_to.w - w))); +Vector4 Vector4::lerp(const Vector4 &p_to, real_t p_weight) const { + Vector4 res = *this; + res.x = Math::lerp(res.x, p_to.x, p_weight); + res.y = Math::lerp(res.y, p_to.y, p_weight); + res.z = Math::lerp(res.z, p_to.z, p_weight); + res.w = Math::lerp(res.w, p_to.w, p_weight); + return res; } -Vector4 Vector4::cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight) const { +Vector4 Vector4::cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, real_t p_weight) const { Vector4 res = *this; res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight); res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight); @@ -149,7 +150,7 @@ Vector4 Vector4::cubic_interpolate(const Vector4 &p_b, const Vector4 &p_pre_a, c return res; } -Vector4 Vector4::cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +Vector4 Vector4::cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_pre_a, const Vector4 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const { Vector4 res = *this; res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); @@ -158,7 +159,7 @@ Vector4 Vector4::cubic_interpolate_in_time(const Vector4 &p_b, const Vector4 &p_ return res; } -Vector4 Vector4::posmod(const real_t p_mod) const { +Vector4 Vector4::posmod(real_t p_mod) const { return Vector4(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod), Math::fposmod(w, p_mod)); } @@ -213,9 +214,13 @@ Vector4 Vector4::clampf(real_t p_min, real_t p_max) const { } Vector4::operator String() const { - return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; + return "(" + String::num_real(x, true) + ", " + String::num_real(y, true) + ", " + String::num_real(z, true) + ", " + String::num_real(w, true) + ")"; } static_assert(sizeof(Vector4) == 4 * sizeof(real_t)); +Vector4::operator Vector4i() const { + return Vector4i(x, y, z, w); +} + } // namespace godot diff --git a/src/variant/vector4i.cpp b/src/variant/vector4i.cpp index b0e330ca2..d138610d9 100644 --- a/src/variant/vector4i.cpp +++ b/src/variant/vector4i.cpp @@ -35,22 +35,6 @@ namespace godot { -Vector4i Vector4i::snapped(const Vector4i &p_step) const { - return Vector4i( - Math::snapped(x, p_step.x), - Math::snapped(y, p_step.y), - Math::snapped(z, p_step.z), - Math::snapped(w, p_step.w)); -} - -Vector4i Vector4i::snappedi(int32_t p_step) const { - return Vector4i( - Math::snapped(x, p_step), - Math::snapped(y, p_step), - Math::snapped(z, p_step), - Math::snapped(w, p_step)); -} - Vector4i::Axis Vector4i::min_axis_index() const { uint32_t min_index = 0; int32_t min_value = x; @@ -91,6 +75,22 @@ Vector4i Vector4i::clampi(int32_t p_min, int32_t p_max) const { CLAMP(w, p_min, p_max)); } +Vector4i Vector4i::snapped(const Vector4i &p_step) const { + return Vector4i( + Math::snapped(x, p_step.x), + Math::snapped(y, p_step.y), + Math::snapped(z, p_step.z), + Math::snapped(w, p_step.w)); +} + +Vector4i Vector4i::snappedi(int32_t p_step) const { + return Vector4i( + Math::snapped(x, p_step), + Math::snapped(y, p_step), + Math::snapped(z, p_step), + Math::snapped(w, p_step)); +} + Vector4i::operator String() const { return "(" + itos(x) + ", " + itos(y) + ", " + itos(z) + ", " + itos(w) + ")"; }