-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector-quantization.html
787 lines (677 loc) · 32.7 KB
/
vector-quantization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Smile - Vector Quantization</title>
<meta name="description" content="Statistical Machine Intelligence and Learning Engine">
<!-- prettify js and CSS -->
<script src="https://cdn.rawgit.com/google/code-prettify/master/loader/run_prettify.js?lang=scala&lang=kotlin&lang=clj"></script>
<style>
.prettyprint ol.linenums > li { list-style-type: decimal; }
</style>
<!-- Bootstrap core CSS -->
<link href="css/cerulean.min.css" rel="stylesheet">
<link href="css/custom.css" rel="stylesheet">
<script src="https://code.jquery.com/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<!-- slider -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/owl-carousel/1.3.3/owl.carousel.min.js"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/owl-carousel/1.3.3/owl.carousel.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/owl-carousel/1.3.3/owl.transitions.css" type="text/css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/owl-carousel/1.3.3/owl.theme.min.css" type="text/css" />
<!-- table of contents auto generator -->
<script src="js/toc.js" type="text/javascript"></script>
<!-- styles for pager and table of contents -->
<link rel="stylesheet" href="css/pager.css" type="text/css" />
<link rel="stylesheet" href="css/toc.css" type="text/css" />
<!-- Vega-Lite Embed -->
<script src="https://cdn.jsdelivr.net/npm/vega@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-lite@5"></script>
<script src="https://cdn.jsdelivr.net/npm/vega-embed@6"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-57GD08QCML"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-57GD08QCML');
</script>
<!-- Sidebar and testimonial-slider -->
<script type="text/javascript">
$(document).ready(function(){
// scroll/follow sidebar
// #sidebar is defined in the content snippet
// This script has to be executed after the snippet loaded.
// $.getScript("js/follow-sidebar.js");
$("#testimonial-slider").owlCarousel({
items: 1,
singleItem: true,
pagination: true,
navigation: false,
loop: true,
autoPlay: 10000,
stopOnHover: true,
transitionStyle: "backSlide",
touchDrag: true
});
});
</script>
</head>
<body>
<div class="container" style="max-width: 1200px;">
<header>
<div class="masthead">
<p class="lead">
<a href="index.html">
<img src="images/smile.jpg" style="height:100px; width:auto; vertical-align: bottom; margin-top: 20px; margin-right: 20px;">
<span class="tagline">Smile — Statistical Machine Intelligence and Learning Engine</span>
</a>
</p>
</div>
<nav class="navbar navbar-default" role="navigation">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#navbar-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="navbar-collapse">
<ul class="nav navbar-nav">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Overview <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="quickstart.html">Quick Start</a></li>
<li><a href="overview.html">What's Machine Learning</a></li>
<li><a href="data.html">Data Processing</a></li>
<li><a href="visualization.html">Data Visualization</a></li>
<li><a href="vegalite.html">Declarative Visualization</a></li>
<li><a href="gallery.html">Gallery</a></li>
<li><a href="faq.html">FAQ</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Supervised Learning <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="classification.html">Classification</a></li>
<li><a href="regression.html">Regression</a></li>
<li><a href="deep-learning.html">Deep Learning</a></li>
<li><a href="feature.html">Feature Engineering</a></li>
<li><a href="validation.html">Model Validation</a></li>
<li><a href="missing-value-imputation.html">Missing Value Imputation</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Unsupervised Learning <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="clustering.html">Clustering</a></li>
<li><a href="vector-quantization.html">Vector Quantization</a></li>
<li><a href="association-rule.html">Association Rule Mining</a></li>
<li><a href="mds.html">Multi-Dimensional Scaling</a></li>
<li><a href="manifold.html">Manifold Learning</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">LLM & NLP <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="llm.html">Large Language Model (LLM)</a></li>
<li><a href="nlp.html">Natural Language Processing (NLP)</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Math <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="linear-algebra.html">Linear Algebra</a></li>
<li><a href="statistics.html">Statistics</a></li>
<li><a href="wavelet.html">Wavelet</a></li>
<li><a href="interpolation.html">Interpolation</a></li>
<li><a href="graph.html">Graph Data Structure</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">API <b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="api/java/index.html" target="_blank">Java</a></li>
<li><a href="api/scala/index.html" target="_blank">Scala</a></li>
<li><a href="api/kotlin/index.html" target="_blank">Kotlin</a></li>
<li><a href="api/clojure/index.html" target="_blank">Clojure</a></li>
<li><a href="api/json/index.html" target="_blank">JSON</a></li>
</ul>
</li>
<li><a href="https://mybinder.org/v2/gh/haifengl/smile/notebook?urlpath=lab%2Ftree%2Fshell%2Fsrc%2Funiversal%2Fnotebooks%2Findex.ipynb" target="_blank">Try It Online</a></li>
</ul>
</div>
<!-- /.navbar-collapse -->
</nav>
</header>
<div id="content" class="row">
<div class="col-md-3 col-md-push-9 hidden-xs hidden-sm">
<div id="sidebar">
<div class="sidebar-toc" style="margin-bottom: 20px;">
<p class="toc-header">Contents</p>
<div id="toc"></div>
</div>
<div id="search">
<script>
(function() {
var cx = '010264411143030149390:ajvee_ckdzs';
var gcse = document.createElement('script');
gcse.type = 'text/javascript';
gcse.async = true;
gcse.src = (document.location.protocol == 'https:' ? 'https:' : 'http:') +
'//cse.google.com/cse.js?cx=' + cx;
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(gcse, s);
})();
</script>
<gcse:searchbox-only></gcse:searchbox-only>
</div>
</div>
</div>
<div class="col-md-9 col-md-pull-3">
<h1 id="vector-quantization-top" class="title">Vector Quantization</h1>
<p>Originally used for data compression, Vector quantization (VQ)
allows the modeling of probability density functions by
the distribution of prototype vectors. It works by dividing a large set of points
(vectors) into groups having approximately the same number of
points closest to them. Each group is represented by its centroid
point, as in K-Means and some other clustering algorithms.
Because of this reason, the algorithm discussed in this section are
in the same package of clustering algorithms.</p>
<p>Vector quantization is based on the competitive learning paradigm,
and also closely related to sparse coding models
used in deep learning algorithms such as autoencoder.</p>
<h2 id="som">Self-Organizing Map</h2>
<p>A Self-Organizing Map (SOM) is an unsupervised learning method to produce
a low-dimensional (typically two-dimensional) discretized representation
(called a map) of the input space of the training samples. The model was
first described as an artificial neural network by Teuvo Kohonen, and is
sometimes called a Kohonen map.</p>
<p>While it is typical to consider SOMs as related to feed-forward networks where
the nodes are visualized as being attached, this type of architecture is
fundamentally different in arrangement and motivation because SOMs use a
neighborhood function to preserve the topological properties of the input
space. This makes SOMs useful for visualizing low-dimensional views of
high-dimensional data, akin to multi-dimensional scaling.</p>
<p>An SOM consists of components called nodes or neurons.
Associated with each node is a weight vector of the same dimension as
the input data vectors and a position in the map space. The usual arrangement
of nodes is a regular spacing in a hexagonal or rectangular grid. During the (iterative) learning,
the input vectors are compared to the weight vector of each neuron. Neurons
who most closely match the input are known as the best match unit (BMU) of
the system. The weight vector of the BMU and those of nearby neurons are
adjusted to be closer to the input vector by a certain step size.</p>
<p>There are two ways to interpret a SOM. Because in the training phase weights
of the whole neighborhood are moved in the same direction, similar items
tend to excite adjacent neurons. Therefore, SOM forms a semantic map where
similar samples are mapped close together and dissimilar apart.
The other way is to think of neuronal weights as pointers to the input space.
They form a discrete approximation of the distribution of training samples.
More neurons point to regions with high training sample concentration and
fewer where the samples are scarce.</p>
<p>SOM may be considered a nonlinear generalization of PCA.
It has been shown, using both artificial and real
geophysical data, that SOM has many advantages over the conventional feature
extraction methods such as Empirical Orthogonal Functions (EOF) or PCA.</p>
<p>It has been shown that while SOMs with a small number of nodes behave in a
way that is similar to K-means. However, larger SOMs rearrange data
in a way that is fundamentally topological in character and display properties
which are emergent. Therefore, large maps are preferable to smaller ones.
In maps consisting of thousands of nodes, it is possible to perform cluster
operations on the map itself.</p>
<p>A common way to display SOMs is the heat map of U-matrix. The U-matrix value
of a particular node is the minimum/maximum/average distance between the node
and its closest neighbors. In a rectangular grid for instance, we might
consider the closest 4 or 8 nodes. It is common to use the U-Matrix to
visualize an SOM. The U-Matrix value of a particular node is the average
distance between the node's weight vector and that of its closest neighbors.
In a square grid, for instance, we might consider the closest 4 or 8 nodes
(the Von Neumann and Moore neighborhoods, respectively), or six nodes in
a hexagonal grid.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/t4.8k.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">Chameleon t4.8k</div>
</div>
<p>In what follows, we apply SOM to a complicated data from Chameleon
data set, as shown in the above. The SOM has <code>20 x 20</code>
neurons.</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_1" data-toggle="tab">Java</a></li>
<li><a href="#scala_1" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_1">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val x = read.csv("data/clustering/chameleon/t4.8k.txt", header=false, delimiter=" ").toArray
val epochs = 20
val lattice = SOM.lattice(20, 20, x)
val som = new SOM(lattice,
TimeFunction.constant(0.1),
Neighborhood.Gaussian(1, x.length * epochs / 4))
(1 to epochs).foreach { _ =>
MathEx.permutate(x.length).foreach { i =>
som.update(x(i));
}
}
show(hexmap(som.umatrix, Palette.jet(256)))
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_1">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code style="white-space: preserve nowrap;">
import smile.util.*;
import smile.vq.*;
var x = Read.csv("data/clustering/chameleon/t4.8k.txt", CSVFormat.DEFAULT.withDelimiter(' ')).toArray();
var epochs = 20;
var lattice = SOM.lattice(20, 20, x);
var som = new SOM(lattice,
TimeFunction.constant(0.1),
Neighborhood.Gaussian(1, x.length * epochs / 4));
for (int e = 0; e < epochs; e++) {
for (int i : MathEx.permutate(x.length)) {
som.update(x[i]);
}
}
Hexmap.of(som.umatrix(), Palette.jet(256)).canvas().window();
</code></pre>
</div>
</div>
</div>
<p>The U-Matrix is visualized with a hexmap, where a dark red coloring between
the neurons corresponds to a large distance and thus a gap between
the codebook values in the input space. A dark blue coloring between
the neurons signifies that the codebook vectors are close to each other
in the input space. The blueish areas can be thought as clusters and
reddish areas as cluster separators. This can be a helpful presentation
when one tries to find clusters in the input data without having any
<i>a priori</i> information about the clusters.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/som-umatrix-hexmap.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">SOM U-Matrix</div>
</div>
<p>One may also fit a Gaussian mixture model on the U-Matrix values.
Our implementation of EM algorithm to fix mixture models can automatically
determine the number of components in the mixture. The distribution
information can be used in other algorithms such as Guassian kernel smooth
parameters, nearest neighbor range, etc.</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_2" data-toggle="tab">Java</a></li>
<li><a href="#scala_2" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_2">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val dist = som.umatrix.flatten
val canvas = hist(dist, 100, true)
val mixture = GaussianMixture.fit(dist)
val minDist = MathEx.min(dist)
val w = (MathEx.max(dist) - minDist) / 50
val pdf = (0 to 50).map { i =>
val x = minDist + i * w
val y = mixture.p(x) * w
Array(x, y)
}.toArray
canvas.add(LinePlot.of(pdf, Color.RED))
show(canvas)
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_2">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code>
var dist = Arrays.stream(som.umatrix()).flatMapToDouble(r -> Arrays.stream(r)).toArray();
var canvas = smile.plot.swing.Histogram.of(dist, 100, true).canvas();
var mixture = GaussianMixture.fit(dist);
var minDist = MathEx.min(dist);
var w = (MathEx.max(dist) - minDist) / 50;
var pdf = new double[51][2];
for (int i = 0; i < pdf.length; i++) {
pdf[i][0] = minDist + i * w;
pdf[i][1] = mixture.p(pdf[i][0]) * w;
}
canvas.add(LinePlot.of(pdf, Color.RED));
canvas.window();
</code></pre>
</div>
</div>
</div>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/som-umatrix-hist.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">SOM U-Matrix Value Distribution</div>
</div>
<p>It is also common to visualize an SOM by mapping the neuron
codebook vectors to a lower dimensional space (e.g. by Sammon's mapping).</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_3" data-toggle="tab">Java</a></li>
<li><a href="#scala_3" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_3">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val codebook = som.neurons.flatten
val codebook2d = sammon(pdist(codebook, false).toArray(), 2).coordinates
val nodes = 20
val neurons = (0 until nodes).map { i => codebook2d.slice(nodes*i, nodes*(i+1)) }.toArray
show(grid(neurons))
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_3">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code>
var codebook = Arrays.stream(som.neurons()).flatMap(r -> Arrays.stream(r)).toArray(double[][]::new);
var codebook2d = SammonMapping.of(MathEx.pdist(codebook, false).toArray(), 2).coordinates;
var nodes = 20;
var neurons = new double[nodes][nodes][];
for (int i = 0, k = 0; i < nodes; i++) {
for (int j = 0; j < nodes; j++, k++) {
neurons[i][j] = codebook2d[k];
}
}
Grid.of(neurons).canvas().window();
</code></pre>
</div>
</div>
</div>
<p>Because this artificial data is 2-dimensional, it is not necessary
to map the neurons in the SOM to a lower dimensional space.
For demonstration, we still go through the whole process with a Sammon's mapping.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/som-sammon.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">SOM Neuron Grid after Sammon's Mapping</div>
</div>
<h2 id="neural-gas">Neural Gas</h2>
<p>The Neural Gas algorithm is inspired
by the SOM for finding optimal data representations based on
feature vectors. The algorithm was coined "Neural Gas" because of the
dynamics of the feature vectors during the adaptation process, which
distribute themselves like a gas within the data space. Although it is mainly
applied where data compression or vector quantization is an issue,
it is also used for cluster analysis as a robustly converging alternative to
the k-means clustering.</p>
<p>Compared to SOM, neural gas has no topology of a fixed dimensionality
(in fact, no topology at all). For each input signal during learning, the
neural gas algorithm sorts the neurons of the network according to the
distance of their reference vectors to the input signal. Based on this
"rank order", neurons are adapted based on the adaptation strength that are
decreased according to a fixed schedule.</p>
<p>The adaptation step of the Neural Gas can be interpreted as gradient descent
on a cost function. By adapting not only the closest feature vector but all
of them with a step size decreasing with increasing distance order,
compared to k-means clustering, a much more robust convergence of the
algorithm can be achieved.</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_4" data-toggle="tab">Java</a></li>
<li><a href="#scala_4" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_4">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val epochs = 20
val gas = new NeuralGas(NeuralGas.seed(400, x),
TimeFunction.exp(0.3, x.length * epochs / 2),
TimeFunction.exp(30, x.length * epochs / 8),
TimeFunction.constant(x.length * 2))
(1 to epochs).foreach { _ =>
MathEx.permutate(x.length).foreach { i =>
gas.update(x(i))
}
}
val canvas = plot(x, '.')
canvas.add(ScatterPlot.of(gas.neurons, '#', BLUE))
show(canvas)
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_4">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code>
var epochs = 20;
var gas = new NeuralGas(NeuralGas.seed(400, x),
TimeFunction.exp(0.3, x.length * epochs / 2),
TimeFunction.exp(30, x.length * epochs / 8),
TimeFunction.constant(x.length * 2));
for (int e = 0; e < epochs; e++) {
for (int i : MathEx.permutate(x.length)) {
gas.update(x[i]);
}
}
var canvas = ScatterPlot.of(x, '.').canvas();
canvas.add(ScatterPlot.of(gas.neurons(), '#', Color.BLUE));
canvas.window();
</code></pre>
</div>
</div>
</div>
<p>In the plot, we draw the neurons as big blue dots.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/neural-gas.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">Neural Gas</div>
</div>
<h2 id="growing-neural-gas">Growing Neural Gas</h2>
<p>A prominent extension is the Growing Neural Gas (GNG).
GNG can add and delete nodes during algorithm execution.
The growth mechanism is based on growing cell structures
and competitive Hebbian learning.</p>
<p>Compared to Neural Gas, GNG has the following distinctions:</p>
<ul>
<li>The system has the ability to add and delete nodes.</li>
<li>Local Error measurements are noted at each step helping it to locally
insert/delete nodes.</li>
<li>Edges are connected between nodes, so a sufficiently old edges is
deleted. Such edges are intended placeholders for localized
data distribution.</li>
<li>Such edges also help to locate distinct clusters (those clusters are
not connected by edges).</li>
</ul>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_5" data-toggle="tab">Java</a></li>
<li><a href="#scala_5" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_5">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val gng = new GrowingNeuralGas(x(0).length)
(1 to 10).foreach { _ =>
MathEx.permutate(x.length).foreach { i =>
gng.update(x(i))
}
}
val neurons = gng.neurons
val canvas = plot(x, '.')
canvas.add(ScatterPlot.of(neurons.map(_.w).toArray, '@', BLUE))
import scala.jdk.CollectionConverters._
neurons.foreach { neuron =>
neuron.edges.asScala.foreach { edge =>
canvas.add(LinePlot.of(Array(neuron.w, edge.neighbor.w), BLUE))
}
}
show(canvas)
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_5">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code style="white-space: preserve nowrap;">
var gng = new GrowingNeuralGas(x[0].length);
for (int e = 0; e < epochs; e++) {
for (int i : MathEx.permutate(x.length)) {
gng.update(x[i]);
}
}
var neurons = gng.neurons();
var canvas = ScatterPlot.of(x, '.').canvas();
canvas.add(ScatterPlot.of(Arrays.stream(neurons).map(n -> n.w).toArray(double[][]::new), '@', Color.BLUE));
Arrays.stream(neurons).forEach(neuron -> {
neuron.edges.stream().forEach(edge -> {
double[][] e = {neuron.w, edge.neighbor.w};
canvas.add(LinePlot.of(e, Color.BLUE));
});
});
canvas.window();
</code></pre>
</div>
</div>
</div>
<p>As shown in the plot, GNG nicely capture the structure of data.
However, there are also neurons fitting noises and connecting
clusters that should be separated. A further graph cut/clustering
may help removing these neurons of noise.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/growing-neural-gas.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">Growing Neural Gas</div>
</div>
<h2 id="neural-map">Neural Map</h2>
<p>Neural Map is an efficient competitive learning algorithm inspired by growing
neural gas and BIRCH. Like growing neural gas, Neural Map has the ability to
add and delete neurons with competitive Hebbian learning. Edges exist between
neurons close to each other. Such edges are intended placeholders for
localized data distribution. Such edges also help to locate distinct clusters
(those clusters are not connected by edges). Neural Map employs Locality-Sensitive
Hashing to speed up the learning while BIRCH uses balanced CF trees.</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_6" data-toggle="tab">Java</a></li>
<li><a href="#scala_6" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_6">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val cortex = new NeuralMap(10, 0.01, 0.002, 50, 0.995)
(1 to 5).foreach { _ =>
MathEx.permutate(x.length).foreach { i =>
cortex.update(x(i))
}
// Removes staled neurons and the edges beyond lifetime.
cortex.clear(1E-7)
}
val neurons = cortex.neurons
val canvas = plot(x, '.')
canvas.add(ScatterPlot.of(neurons.map(_.w).toArray, '@', BLUE))
import scala.jdk.CollectionConverters._
neurons.foreach { neuron =>
neuron.edges.asScala.foreach { edge =>
canvas.add(LinePlot.of(Array(neuron.w, edge.neighbor.w), BLUE))
}
}
show(canvas)
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_6">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code style="white-space: preserve nowrap;">
var cortex = new NeuralMap(10, 0.01, 0.002, 50, 0.995);
for (int e = 0; e < 5; e++) {
for (int i : MathEx.permutate(x.length)) {
cortex.update(x[i]);
}
// Removes staled neurons and the edges beyond lifetime.
cortex.clear(1E-7);
}
var neurons = cortex.neurons();
var canvas = ScatterPlot.of(x, '.').canvas();
canvas.add(ScatterPlot.of(Arrays.stream(neurons).map(n -> n.w).toArray(double[][]::new), '@', Color.BLUE));
Arrays.stream(neurons).forEach(neuron -> {
neuron.edges.stream().forEach(edge -> {
double[][] e = {neuron.w, edge.neighbor.w};
canvas.add(LinePlot.of(e, Color.BLUE));
});
});
canvas.window();
</code></pre>
</div>
</div>
</div>
<p>Note that points in orange are outliers labeled by the algorithm.</p>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/neural-map.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">Neural Map</div>
</div>
<h2 id="birch">BIRCH</h2>
<p>BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) performs
hierarchical clustering over particularly large datasets. An advantage of
BIRCH is its ability to incrementally and dynamically cluster incoming,
multidimensional metric data points in an attempt to produce the high
quality clustering for a given set of resources (memory and time constraints).</p>
<p>BIRCH has several advantages. For example, each clustering decision is made
without scanning all data points and currently existing clusters. It
exploits the observation that data space is not usually uniformly occupied
and not every data point is equally important. It makes full use of
available memory to derive the finest possible sub-clusters while minimizing
I/O costs. It is also an incremental method that does not require the whole
data set in advance.</p>
<p>This implementation produces a clustering in three steps. First step
builds a CF (clustering feature) tree by a single scan of database.
The second step clusters the leaves of CF tree by hierarchical clustering.
Then the user can use the learned model to cluster input data in the final
step. In total, we scan the database twice.</p>
<p>A CF leaf will be treated as outlier if the number of its
points is less than the parameter <code>minPts</code>.
The branching factor parameter <code>branch</code> is the
maximum number of children nodes and the parameter <code>radius</code>
is the maximum radius of a sub-cluster.</p>
<ul class="nav nav-tabs">
<li class="active"><a href="#java_7" data-toggle="tab">Java</a></li>
<li><a href="#scala_7" data-toggle="tab">Scala</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane" id="scala_7">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-scala"><code>
val birch = new BIRCH(x(0).length, 6, 3, 10)
x.foreach { xi =>
birch.update(xi)
}
val canvas = plot(x, '.')
canvas.add(ScatterPlot.of(birch.centroids, '#', BLUE))
show(canvas)
</code></pre>
</div>
</div>
<div class="tab-pane active" id="java_7">
<div class="code" style="text-align: left;">
<pre class="prettyprint lang-java"><code>
var birch = new BIRCH(x[0].length, 6, 3, 10);
for (double[] xi : x) {
birch.update(xi);
}
var canvas = ScatterPlot.of(x, '.').canvas();
canvas.add(ScatterPlot.of(birch.centroids(), '#', Color.BLUE));
canvas.window();
</code></pre>
</div>
</div>
</div>
<div style="width: 100%; display: inline-block; text-align: center;">
<img src="images/birch.png" class="enlarge" style="width: 480px;" />
<div class="caption" style="min-width: 480px;">BIRCH</div>
</div>
<div id="btnv">
<span class="btn-arrow-left">← </span>
<a class="btn-prev-text" href="clustering.html" title="Previous Section: Clustering"><span>Clustering</span></a>
<a class="btn-next-text" href="association-rule.html" title="Next Section: Association Rule Mining"><span>Association Rule Mining</span></a>
<span class="btn-arrow-right"> →</span>
</div>
</div>
<script type="text/javascript">
$('#toc').toc({exclude: 'h1, h5, h6', context: '', autoId: true, numerate: false});
</script>
</div>
</div>
<a href=https://github.com/haifengl/smile><img style="position: fixed; top: 0; right: 0; border: 0" src=/images/forkme_right_orange.png alt="Fork me on GitHub"></a>
<!-- Place this tag right after the last button or just before your close body tag. -->
<script async defer id="github-bjs" src="https://buttons.github.io/buttons.js"></script>
</body>
</html>