|
| 1 | +import random |
| 2 | +import torch |
| 3 | +import numpy as np |
| 4 | +import colossalai |
| 5 | +from colossalai.logging import disable_existing_loggers, get_dist_logger |
| 6 | +from colossalai.core import global_context as gpc |
| 7 | +from colossalai.nn.optimizer import HybridAdam |
| 8 | + |
| 9 | +from tqdm import tqdm |
| 10 | + |
| 11 | +from fastfold.config import model_config |
| 12 | +from fastfold.model.hub import AlphaFold, AlphaFoldLRScheduler, AlphaFoldLoss |
| 13 | +from fastfold.utils.inject_fastnn import inject_fastnn |
| 14 | +from fastfold.data.data_modules import SetupTrainDataset, TrainDataLoader |
| 15 | +from fastfold.utils.tensor_utils import tensor_tree_map |
| 16 | + |
| 17 | +import logging |
| 18 | +logging.disable(logging.WARNING) |
| 19 | +import torch.multiprocessing |
| 20 | +torch.multiprocessing.set_sharing_strategy('file_system') |
| 21 | + |
| 22 | +def main(): |
| 23 | + parser = colossalai.get_default_parser() |
| 24 | + parser.add_argument('--from_torch', default=False, action='store_true') |
| 25 | + parser.add_argument( |
| 26 | + "--template_mmcif_dir", type=str, |
| 27 | + help="Directory containing mmCIF files to search for templates" |
| 28 | + ) |
| 29 | + parser.add_argument( |
| 30 | + "--max_template_date", type=str, |
| 31 | + help='''Cutoff for all templates. In training mode, templates are also |
| 32 | + filtered by the release date of the target''' |
| 33 | + ) |
| 34 | + parser.add_argument( |
| 35 | + "--train_data_dir", type=str, |
| 36 | + help="Directory containing training mmCIF files" |
| 37 | + ) |
| 38 | + parser.add_argument( |
| 39 | + "--train_alignment_dir", type=str, |
| 40 | + help="Directory containing precomputed training alignments" |
| 41 | + ) |
| 42 | + parser.add_argument( |
| 43 | + "--train_chain_data_cache_path", type=str, default=None, |
| 44 | + ) |
| 45 | + parser.add_argument( |
| 46 | + "--distillation_data_dir", type=str, default=None, |
| 47 | + help="Directory containing training PDB files" |
| 48 | + ) |
| 49 | + parser.add_argument( |
| 50 | + "--distillation_alignment_dir", type=str, default=None, |
| 51 | + help="Directory containing precomputed distillation alignments" |
| 52 | + ) |
| 53 | + parser.add_argument( |
| 54 | + "--distillation_chain_data_cache_path", type=str, default=None, |
| 55 | + ) |
| 56 | + parser.add_argument( |
| 57 | + "--val_data_dir", type=str, default=None, |
| 58 | + help="Directory containing validation mmCIF files" |
| 59 | + ) |
| 60 | + parser.add_argument( |
| 61 | + "--val_alignment_dir", type=str, default=None, |
| 62 | + help="Directory containing precomputed validation alignments" |
| 63 | + ) |
| 64 | + parser.add_argument( |
| 65 | + "--kalign_binary_path", type=str, default='/usr/bin/kalign', |
| 66 | + help="Path to the kalign binary" |
| 67 | + ) |
| 68 | + parser.add_argument( |
| 69 | + "--train_filter_path", type=str, default=None, |
| 70 | + help='''Optional path to a text file containing names of training |
| 71 | + examples to include, one per line. Used to filter the training |
| 72 | + set''' |
| 73 | + ) |
| 74 | + parser.add_argument( |
| 75 | + "--distillation_filter_path", type=str, default=None, |
| 76 | + help="""See --train_filter_path""" |
| 77 | + ) |
| 78 | + parser.add_argument( |
| 79 | + "--obsolete_pdbs_file_path", type=str, default=None, |
| 80 | + help="""Path to obsolete.dat file containing list of obsolete PDBs and |
| 81 | + their replacements.""" |
| 82 | + ) |
| 83 | + parser.add_argument( |
| 84 | + "--template_release_dates_cache_path", type=str, default=None, |
| 85 | + help="""Output of scripts/generate_mmcif_cache.py run on template mmCIF |
| 86 | + files.""" |
| 87 | + ) |
| 88 | + parser.add_argument( |
| 89 | + "--train_epoch_len", type=int, default=10000, |
| 90 | + help=( |
| 91 | + "The virtual length of each training epoch. Stochastic filtering " |
| 92 | + "of training data means that training datasets have no " |
| 93 | + "well-defined length. This virtual length affects frequency of " |
| 94 | + "validation & checkpointing (by default, one of each per epoch)." |
| 95 | + ) |
| 96 | + ) |
| 97 | + parser.add_argument( |
| 98 | + "--_alignment_index_path", type=str, default=None, |
| 99 | + help="Training alignment index. See the README for instructions." |
| 100 | + ) |
| 101 | + parser.add_argument( |
| 102 | + "--config_preset", type=str, default="initial_training", |
| 103 | + help=( |
| 104 | + 'Config setting. Choose e.g. "initial_training", "finetuning", ' |
| 105 | + '"model_1", etc. By default, the actual values in the config are ' |
| 106 | + 'used.' |
| 107 | + ) |
| 108 | + ) |
| 109 | + parser.add_argument( |
| 110 | + "--_distillation_structure_index_path", type=str, default=None, |
| 111 | + ) |
| 112 | + parser.add_argument( |
| 113 | + "--distillation_alignment_index_path", type=str, default=None, |
| 114 | + help="Distillation alignment index. See the README for instructions." |
| 115 | + ) |
| 116 | + parser.add_argument( |
| 117 | + "--seed", type=int, default=42, |
| 118 | + help="Random seed" |
| 119 | + ) |
| 120 | + |
| 121 | + args = parser.parse_args() |
| 122 | + random.seed(args.seed) |
| 123 | + np.random.seed(args.seed) |
| 124 | + torch.manual_seed(args.seed) |
| 125 | + torch.cuda.manual_seed_all(args.seed) |
| 126 | + if args.from_torch: |
| 127 | + colossalai.launch_from_torch(config=dict(torch_ddp=dict(static_graph=True))) |
| 128 | + disable_existing_loggers() |
| 129 | + logger = get_dist_logger() |
| 130 | + |
| 131 | + config = model_config(args.config_preset, train=True) |
| 132 | + config.globals.inplace = False |
| 133 | + model = AlphaFold(config) |
| 134 | + model = inject_fastnn(model) |
| 135 | + |
| 136 | + |
| 137 | + train_dataset, test_dataset = SetupTrainDataset( |
| 138 | + config=config.data, |
| 139 | + template_mmcif_dir=args.template_mmcif_dir, |
| 140 | + max_template_date=args.max_template_date, |
| 141 | + train_data_dir=args.train_data_dir, |
| 142 | + train_alignment_dir=args.train_alignment_dir, |
| 143 | + train_chain_data_cache_path=args.train_chain_data_cache_path, |
| 144 | + distillation_data_dir=args.distillation_data_dir, |
| 145 | + distillation_alignment_dir=args.distillation_alignment_dir, |
| 146 | + distillation_chain_data_cache_path=args.distillation_chain_data_cache_path, |
| 147 | + val_data_dir=args.val_data_dir, |
| 148 | + val_alignment_dir=args.val_alignment_dir, |
| 149 | + kalign_binary_path=args.kalign_binary_path, |
| 150 | + # train_mapping_path=args.train_mapping_path, |
| 151 | + # distillation_mapping_path=args.distillation_mapping_path, |
| 152 | + obsolete_pdbs_file_path=args.obsolete_pdbs_file_path, |
| 153 | + template_release_dates_cache_path=args.template_release_dates_cache_path, |
| 154 | + train_epoch_len=args.train_epoch_len, |
| 155 | + _alignment_index_path=args._alignment_index_path, |
| 156 | + ) |
| 157 | + |
| 158 | + train_dataloader, test_dataloader = TrainDataLoader( |
| 159 | + config=config.data, |
| 160 | + train_dataset=train_dataset, |
| 161 | + test_dataset=test_dataset, |
| 162 | + batch_seed=args.seed, |
| 163 | + ) |
| 164 | + |
| 165 | + |
| 166 | + criterion = AlphaFoldLoss(config.loss) |
| 167 | + |
| 168 | + optimizer = HybridAdam(model.parameters(), lr=1e-3, eps=1e-8) |
| 169 | + |
| 170 | + lr_scheduler = AlphaFoldLRScheduler(optimizer) |
| 171 | + |
| 172 | + |
| 173 | + engine, train_dataloader, test_dataloader, lr_scheduler = colossalai.initialize( |
| 174 | + model=model, |
| 175 | + optimizer=optimizer, |
| 176 | + criterion=criterion, |
| 177 | + lr_scheduler=lr_scheduler, |
| 178 | + train_dataloader=train_dataloader, |
| 179 | + test_dataloader=test_dataloader, |
| 180 | + ) |
| 181 | + |
| 182 | + for epoch in range(200): |
| 183 | + engine.train() |
| 184 | + if gpc.get_global_rank() == 0: |
| 185 | + train_dataloader = tqdm(train_dataloader) |
| 186 | + for batch in train_dataloader: |
| 187 | + batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()} |
| 188 | + engine.zero_grad() |
| 189 | + output = engine(batch) |
| 190 | + batch = tensor_tree_map(lambda t: t[..., -1], batch) |
| 191 | + loss, loss_breakdown = engine.criterion( |
| 192 | + output, batch, _return_breakdown=True) |
| 193 | + if gpc.get_global_rank() == 0: |
| 194 | + train_dataloader.set_postfix(loss=float(loss)) |
| 195 | + engine.backward(loss) |
| 196 | + engine.step() |
| 197 | + lr_scheduler.step() |
| 198 | + |
| 199 | + if test_dataloader is not None: |
| 200 | + engine.eval() |
| 201 | + if gpc.get_global_rank() == 0: |
| 202 | + train_dataloader = tqdm(train_dataloader) |
| 203 | + for batch in test_dataloader: |
| 204 | + batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()} |
| 205 | + with torch.no_grad(): |
| 206 | + output = engine(batch) |
| 207 | + batch = tensor_tree_map(lambda t: t[..., -1], batch) |
| 208 | + _, loss_breakdown = engine.criterion( |
| 209 | + output, batch, _return_breakdown=True) |
| 210 | + if gpc.get_global_rank() == 0: |
| 211 | + train_dataloader.set_postfix(loss=float(loss)) |
| 212 | + |
| 213 | + |
| 214 | + |
| 215 | +if __name__ == "__main__": |
| 216 | + main() |
0 commit comments