|
| 1 | +import unittest |
| 2 | +import os |
| 3 | +import random |
| 4 | + |
| 5 | +import torch |
| 6 | +import apex |
| 7 | + |
| 8 | +class TestFusedAdam(unittest.TestCase): |
| 9 | + def setUp(self, max_abs_diff=1e-3, max_rel_diff=1, iters=7): |
| 10 | + self.max_abs_diff = max_abs_diff |
| 11 | + self.max_rel_diff = max_rel_diff |
| 12 | + self.iters = iters |
| 13 | + torch.cuda.manual_seed(9876) |
| 14 | + |
| 15 | + def tearDown(self): |
| 16 | + pass |
| 17 | + |
| 18 | + def gen_param_optim(self, tensors, adam_option): |
| 19 | + ref_param = [] |
| 20 | + tst_param = [] |
| 21 | + for tensor in tensors: |
| 22 | + ref_param.append(torch.nn.Parameter(tensor.clone())) |
| 23 | + tst_param.append(torch.nn.Parameter(tensor.clone())) |
| 24 | + |
| 25 | + ref_optim = torch.optim.Adam(ref_param, **adam_option) |
| 26 | + tst_optim = apex.optimizers.FusedAdam(tst_param, **adam_option) |
| 27 | + |
| 28 | + return (ref_param, tst_param, ref_optim, tst_optim) |
| 29 | + |
| 30 | + def gen_grad(self, ref_param, tst_param): |
| 31 | + for p_ref, p_tst in zip(ref_param, tst_param): |
| 32 | + p_ref.grad = torch.rand_like(p_ref) |
| 33 | + p_tst.grad = p_ref.grad |
| 34 | + |
| 35 | + def gen_mixed_grad(self, ref_param, tst_param, scale=1.0): |
| 36 | + half_grads = [] |
| 37 | + for p_ref, p_tst in zip(ref_param, tst_param): |
| 38 | + half_grads.append(torch.rand_like(p_ref).half()) |
| 39 | + p_ref.grad = half_grads[-1].float() / scale |
| 40 | + return half_grads |
| 41 | + |
| 42 | + def get_max_diff(self, ref_param, tst_param): |
| 43 | + max_abs_diff = max_rel_diff = 0 |
| 44 | + for p_ref, p_tst in zip(ref_param, tst_param): |
| 45 | + max_abs_diff_p = (p_ref - p_tst).abs().max().item() |
| 46 | + max_rel_diff_p = ((p_ref - p_tst) / p_ref).abs().max().item() |
| 47 | + |
| 48 | + if max_abs_diff_p > max_abs_diff: max_abs_diff = max_abs_diff_p |
| 49 | + if max_rel_diff_p > max_rel_diff: max_rel_diff = max_rel_diff_p |
| 50 | + |
| 51 | + return max_abs_diff, max_rel_diff |
| 52 | + |
| 53 | + def gen_single_type_test(self, param_type=torch.float): |
| 54 | + nelem = 278011 |
| 55 | + adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, |
| 56 | + 'weight_decay':0, 'amsgrad':False} |
| 57 | + |
| 58 | + tensor = torch.rand(nelem, dtype=param_type, device='cuda') |
| 59 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 60 | + self.gen_param_optim([tensor], adam_option) |
| 61 | + |
| 62 | + for i in range(self.iters): |
| 63 | + self.gen_grad(ref_param, tst_param) |
| 64 | + ref_optim.step() |
| 65 | + tst_optim.step() |
| 66 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 67 | + |
| 68 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 69 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 70 | + |
| 71 | + def test_double(self): |
| 72 | + self.gen_single_type_test(param_type=torch.double) |
| 73 | + |
| 74 | + def test_float(self): |
| 75 | + self.gen_single_type_test(param_type=torch.float) |
| 76 | + |
| 77 | + def test_half(self): |
| 78 | + nelem = 278011 |
| 79 | + adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, |
| 80 | + 'weight_decay':0, 'amsgrad':False} |
| 81 | + |
| 82 | + tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
| 83 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 84 | + self.gen_param_optim([tensor], adam_option) |
| 85 | + |
| 86 | + for i in range(self.iters): |
| 87 | + half_grads = self.gen_mixed_grad(ref_param, tst_param) |
| 88 | + ref_optim.step() |
| 89 | + tst_optim.step(grads=half_grads) |
| 90 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 91 | + |
| 92 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 93 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 94 | + |
| 95 | + def test_multi_params(self): |
| 96 | + sizes = [[4096, 1024], [4096], [4096, 2048], [32320, 1024], [1]] |
| 97 | + adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, |
| 98 | + 'weight_decay':0, 'amsgrad':False} |
| 99 | + |
| 100 | + tensors = [] |
| 101 | + for size in sizes: |
| 102 | + tensors.append(torch.rand(size, dtype=torch.float, device='cuda')) |
| 103 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 104 | + self.gen_param_optim(tensors, adam_option) |
| 105 | + |
| 106 | + for i in range(self.iters): |
| 107 | + half_grads = self.gen_mixed_grad(ref_param, tst_param) |
| 108 | + ref_optim.step() |
| 109 | + tst_optim.step(grads=half_grads) |
| 110 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 111 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 112 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 113 | + |
| 114 | + def test_scale(self): |
| 115 | + nelem = 278011 |
| 116 | + adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, |
| 117 | + 'weight_decay':0, 'amsgrad':False} |
| 118 | + |
| 119 | + tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
| 120 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 121 | + self.gen_param_optim([tensor], adam_option) |
| 122 | + |
| 123 | + for i in range(self.iters): |
| 124 | + scale = random.random() * 1000 |
| 125 | + half_grads = self.gen_mixed_grad(ref_param, tst_param, scale) |
| 126 | + ref_optim.step() |
| 127 | + tst_optim.step(grads=half_grads, scale=scale) |
| 128 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 129 | + |
| 130 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 131 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 132 | + |
| 133 | + def test_fp16_output(self): |
| 134 | + nelem = 278011 |
| 135 | + adam_option = {'lr':5e-4, 'betas':(0.9, 0.999), 'eps':1e-08, |
| 136 | + 'weight_decay':0, 'amsgrad':False} |
| 137 | + |
| 138 | + tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
| 139 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 140 | + self.gen_param_optim([tensor], adam_option) |
| 141 | + |
| 142 | + fp16_param = torch.nn.Parameter(tensor.clone().half()) |
| 143 | + |
| 144 | + for i in range(self.iters): |
| 145 | + half_grads = self.gen_mixed_grad(ref_param, tst_param) |
| 146 | + ref_optim.step() |
| 147 | + tst_optim.step(grads=half_grads, output_params=[fp16_param]) |
| 148 | + |
| 149 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 150 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 151 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 152 | + |
| 153 | + max_abs_diff, max_rel_diff = self.get_max_diff(tst_param, \ |
| 154 | + [fp16_param.float()]) |
| 155 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 156 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 157 | + |
| 158 | + def test_adam_option(self): |
| 159 | + nelem = 1 |
| 160 | + adam_option = {'lr':0.01, 'betas':(0.6, 0.9), 'eps':3e-06, |
| 161 | + 'weight_decay':0, 'amsgrad':False} |
| 162 | + |
| 163 | + tensor = torch.rand(nelem, dtype=torch.float, device='cuda') |
| 164 | + ref_param, tst_param, ref_optim, tst_optim = \ |
| 165 | + self.gen_param_optim([tensor], adam_option) |
| 166 | + |
| 167 | + for i in range(self.iters): |
| 168 | + self.gen_grad(ref_param, tst_param) |
| 169 | + ref_optim.step() |
| 170 | + tst_optim.step() |
| 171 | + max_abs_diff, max_rel_diff = self.get_max_diff(ref_param, tst_param) |
| 172 | + |
| 173 | + self.assertLessEqual(max_abs_diff, self.max_abs_diff) |
| 174 | + self.assertLessEqual(max_rel_diff, self.max_rel_diff) |
| 175 | + |
| 176 | + |
| 177 | +if __name__ == '__main__': |
| 178 | + script_path = os.path.dirname(os.path.realpath(__file__)) |
| 179 | + unittest.main() |
0 commit comments