Skip to content

Commit 004af16

Browse files
authored
Update PT_MXQuant.md
1 parent ebc260b commit 004af16

File tree

1 file changed

+3
-27
lines changed

1 file changed

+3
-27
lines changed

docs/source/3x/PT_MXQuant.md

Lines changed: 3 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,9 @@ Microscaling Quantization
22
===============
33

44
1. [Introduction](#introduction)
5-
2. [Supported Framework Model Matrix](#supported-framework-model-matrix)
6-
3. [Get Started with Microscaling Quantization API](#get-start-with-microscaling-quantization-api)
7-
4. [Examples](#examples)
8-
5. [Reference](#reference)
5+
2. [Get Started with Microscaling Quantization API](#get-start-with-microscaling-quantization-api)
6+
3. [Examples](#examples)
7+
4. [Reference](#reference)
98

109
## Introduction
1110

@@ -82,29 +81,6 @@ The memory and computational limits of LLMs are more severe than other general n
8281
The exponent (exp) is equal to torch.floor(torch.log2(amax)), MAX is the representation range of the data type, amax is the max absolute value of per-block tensor, and rmin is the minimum value of the per-block tensor.
8382

8483

85-
## Supported Framework Model Matrix
86-
87-
88-
<table>
89-
<tr>
90-
<th>Framework</th>
91-
<th>Status</th>
92-
</tr>
93-
<tr>
94-
<td>PyTorch</td>
95-
<td>&#10004;</td>
96-
</tr>
97-
<tr>
98-
<td>ONNX Runtime</td>
99-
<td>&#10005;</td>
100-
</tr>
101-
<tr>
102-
<td>TensorFlow</td>
103-
<td>&#10005;</td>
104-
</tr>
105-
</table>
106-
107-
10884
## Get Started with Microscaling Quantization API
10985

11086
To get a model quantized with Microscaling Data Types, users can use the Microscaling Quantization API as follows.

0 commit comments

Comments
 (0)