@@ -107,7 +107,6 @@ def randn(self, *args, **kwargs):
107
107
# TODO: Put this in torch.cuda.randn
108
108
return self .ValueTensor (* args , ** kwargs ).normal_ ()
109
109
110
- @skipIfRocm
111
110
def test_basic (self ):
112
111
x , i , v = self ._gen_sparse (3 , 10 , 100 )
113
112
@@ -156,7 +155,6 @@ def test_ctor_size_checks(self):
156
155
RuntimeError ,
157
156
lambda : self .SparseTensor (indices , values , torch .Size ([2 , 4 , 2 , 1 ])))
158
157
159
- @skipIfRocm
160
158
def test_to_dense (self ):
161
159
i = self .IndexTensor ([
162
160
[0 , 1 , 2 , 2 ],
@@ -186,7 +184,6 @@ def test_to_dense(self):
186
184
self .assertEqual (res , x .to_dense ())
187
185
self .assertEqual (res , self .safeToDense (x ))
188
186
189
- @skipIfRocm
190
187
def test_shared (self ):
191
188
i = self .IndexTensor ([[2 ]])
192
189
v = self .ValueTensor ([5 ])
@@ -196,7 +193,6 @@ def test_shared(self):
196
193
i [0 ][0 ] = 0
197
194
self .assertEqual (self .ValueTensor ([6 , 0 , 0 ]), self .safeToDense (x ))
198
195
199
- @skipIfRocm
200
196
def test_to_dense_hybrid (self ):
201
197
i = self .IndexTensor ([
202
198
[0 , 1 , 2 , 2 ],
@@ -225,7 +221,6 @@ def test_to_dense_hybrid(self):
225
221
self .assertEqual (res , x .to_dense ())
226
222
self .assertEqual (res , self .safeToDense (x ))
227
223
228
- @skipIfRocm
229
224
def test_contig (self ):
230
225
i = self .IndexTensor ([
231
226
[1 , 0 , 35 , 14 , 39 , 6 , 71 , 66 , 40 , 27 ],
@@ -279,7 +274,6 @@ def test_contig(self):
279
274
self .assertEqual (exp_i , x ._indices ())
280
275
self .assertEqual (exp_v , x ._values ())
281
276
282
- @skipIfRocm
283
277
def test_contig_hybrid (self ):
284
278
i = self .IndexTensor ([
285
279
[1 , 0 , 35 , 14 , 39 , 6 , 71 , 66 , 40 , 27 ],
@@ -339,7 +333,6 @@ def test_contig_hybrid(self):
339
333
self .assertEqual (exp_i , x ._indices ())
340
334
self .assertEqual (exp_v , x ._values ())
341
335
342
- @skipIfRocm
343
336
def test_clone (self ):
344
337
x , _ , _ = self ._gen_sparse (4 , 20 , 5 )
345
338
if self .is_uncoalesced :
@@ -361,7 +354,6 @@ def test_cuda_empty(self):
361
354
self .assertEqual (y ._sparseDims (), x ._sparseDims ())
362
355
self .assertEqual (y ._denseDims (), x ._denseDims ())
363
356
364
- @skipIfRocm
365
357
def test_transpose (self ):
366
358
x = self ._gen_sparse (4 , 20 , 5 )[0 ]
367
359
y = self .safeToDense (x )
@@ -410,7 +402,6 @@ def test_t_empty(self):
410
402
self .assertEqual (x ._sparseDims (), 2 )
411
403
self .assertEqual (x ._denseDims (), 0 )
412
404
413
- @skipIfRocm
414
405
def test_add_zeros (self ):
415
406
def test_shape (sparse_dims , sizes ):
416
407
x , _ , _ = self ._gen_sparse (sparse_dims , 20 , sizes )
@@ -474,7 +465,6 @@ def test_shape(di, dj, dk):
474
465
test_shape (1000 , 100 , 100 )
475
466
test_shape (3000 , 64 , 300 )
476
467
477
- @skipIfRocm
478
468
def test_dsmm (self ):
479
469
def test_shape (di , dj , dk ):
480
470
x = self ._gen_sparse (2 , 20 , [di , dj ])[0 ]
@@ -488,7 +478,6 @@ def test_shape(di, dj, dk):
488
478
test_shape (1000 , 100 , 100 )
489
479
test_shape (3000 , 64 , 300 )
490
480
491
- @skipIfRocm
492
481
def test_hsmm (self ):
493
482
def test_shape (di , dj , dk ):
494
483
x = self ._gen_sparse (2 , 20 , [di , dj ])[0 ]
0 commit comments