Skip to content

Commit 2dc1cd1

Browse files
committed
resolve merge conflict in favour of agda#2293
1 parent 6a15b8e commit 2dc1cd1

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

src/Data/Container/Combinator/Properties.agda

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open import Data.Sum.Base as S using (inj₁; inj₂; [_,_]′; [_,_])
1818
open import Function.Base as F using (_∘′_)
1919
open import Function.Bundles
2020
open import Level using (_⊔_; lower)
21-
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
21+
open import Relation.Binary.PropositionalEquality using (_≡_; _≗_; refl; cong)
2222

2323
-- I have proved some of the correctness statements under the
2424
-- assumption of functional extensionality. I could have reformulated
@@ -27,52 +27,52 @@ open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
2727
module Identity where
2828

2929
correct : {s p x} {X : Set x} ⟦ id {s} {p} ⟧ X ↔ F.id X
30-
correct {X = X} = mk↔ₛ′ from-id to-id (λ _ ≡.refl) (λ _ ≡.refl)
30+
correct {X = X} = mk↔ₛ′ from-id to-id (λ _ refl) (λ _ refl)
3131

3232
module Constant (ext : {ℓ ℓ′} Extensionality ℓ ℓ′) where
3333

3434
correct : {x p y} (X : Set x) {Y : Set y} ⟦ const {x} {p ⊔ y} X ⟧ Y ↔ F.const X Y
35-
correct {x} {y} X {Y} = mk↔ₛ′ (from-const X) (to-const X) (λ _ ≡.refl) from∘to
35+
correct {x} {y} X {Y} = mk↔ₛ′ (from-const X) (to-const X) (λ _ refl) from∘to
3636
where
3737
from∘to : (x : ⟦ const X ⟧ Y) to-const X (proj₁ x) ≡ x
38-
from∘to xs = ≡.cong (proj₁ xs ,_) (ext (λ x ⊥-elim (lower x)))
38+
from∘to xs = cong (proj₁ xs ,_) (ext (λ x ⊥-elim (lower x)))
3939

4040
module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
4141

4242
correct : {x} {X : Set x} ⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ F.∘ ⟦ C₂ ⟧) X
43-
correct {X = X} = mk↔ₛ′ (from-∘ C₁ C₂) (to-∘ C₁ C₂) (λ _ ≡.refl) (λ _ ≡.refl)
43+
correct {X = X} = mk↔ₛ′ (from-∘ C₁ C₂) (to-∘ C₁ C₂) (λ _ refl) (λ _ refl)
4444

4545
module Product (ext : {ℓ ℓ′} Extensionality ℓ ℓ′)
4646
{s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
4747

4848
correct : {x} {X : Set x} ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X P.× ⟦ C₂ ⟧ X)
49-
correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ ≡.refl) from∘to
49+
correct {X = X} = mk↔ₛ′ (from-× C₁ C₂) (to-× C₁ C₂) (λ _ refl) from∘to
5050
where
5151
from∘to : (to-× C₁ C₂) F.∘ (from-× C₁ C₂) ≗ F.id
5252
from∘to (s , f) =
53-
≡.cong (s ,_) (ext [ (λ _ ≡.refl) , (λ _ ≡.refl) ])
53+
cong (s ,_) (ext [ (λ _ refl) , (λ _ refl) ])
5454

5555
module IndexedProduct {i s p} {I : Set i} (Cᵢ : I Container s p) where
5656

5757
correct : {x} {X : Set x} ⟦ Π I Cᵢ ⟧ X ↔ ( i ⟦ Cᵢ i ⟧ X)
58-
correct {X = X} = mk↔ₛ′ (from-Π I Cᵢ) (to-Π I Cᵢ) (λ _ ≡.refl) (λ _ ≡.refl)
58+
correct {X = X} = mk↔ₛ′ (from-Π I Cᵢ) (to-Π I Cᵢ) (λ _ refl) (λ _ refl)
5959

6060
module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where
6161

6262
correct : {x} {X : Set x} ⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X)
6363
correct {X = X} = mk↔ₛ′ (from-⊎ C₁ C₂) (to-⊎ C₁ C₂) to∘from from∘to
6464
where
6565
from∘to : (to-⊎ C₁ C₂) F.∘ (from-⊎ C₁ C₂) ≗ F.id
66-
from∘to (inj₁ s₁ , f) = ≡.refl
67-
from∘to (inj₂ s₂ , f) = ≡.refl
66+
from∘to (inj₁ s₁ , f) = refl
67+
from∘to (inj₂ s₂ , f) = refl
6868

6969
to∘from : (from-⊎ C₁ C₂) F.∘ (to-⊎ C₁ C₂) ≗ F.id
70-
to∘from = [ (λ _ ≡.refl) , (λ _ ≡.refl) ]
70+
to∘from = [ (λ _ refl) , (λ _ refl) ]
7171

7272
module IndexedSum {i s p} {I : Set i} (C : I Container s p) where
7373

7474
correct : {x} {X : Set x} ⟦ Σ I C ⟧ X ↔ (∃ λ i ⟦ C i ⟧ X)
75-
correct {X = X} = mk↔ₛ′ (from-Σ I C) (to-Σ I C) (λ _ ≡.refl) (λ _ ≡.refl)
75+
correct {X = X} = mk↔ₛ′ (from-Σ I C) (to-Σ I C) (λ _ refl) (λ _ refl)
7676

7777
module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where
7878

0 commit comments

Comments
 (0)