@@ -54,7 +54,7 @@ class ResNetBackbone(FeaturePyramidBackbone):
54
54
include_rescaling: boolean. If `True`, rescale the input using
55
55
`Rescaling` and `Normalization` layers. If `False`, do nothing.
56
56
Defaults to `True`.
57
- input_image_shape : tuple. The input shape without the batch size.
57
+ image_shape : tuple. The input shape without the batch size.
58
58
Defaults to `(None, None, 3)`.
59
59
pooling: `None` or str. Pooling mode for feature extraction. Defaults
60
60
to `"avg"`.
@@ -107,7 +107,7 @@ def __init__(
107
107
block_type ,
108
108
use_pre_activation = False ,
109
109
include_rescaling = True ,
110
- input_image_shape = (None , None , 3 ),
110
+ image_shape = (None , None , 3 ),
111
111
pooling = "avg" ,
112
112
data_format = None ,
113
113
dtype = None ,
@@ -139,7 +139,7 @@ def __init__(
139
139
num_stacks = len (stackwise_num_filters )
140
140
141
141
# === Functional Model ===
142
- image_input = layers .Input (shape = input_image_shape )
142
+ image_input = layers .Input (shape = image_shape )
143
143
if include_rescaling :
144
144
x = layers .Rescaling (scale = 1 / 255.0 , dtype = dtype )(image_input )
145
145
x = layers .Normalization (
@@ -254,7 +254,7 @@ def __init__(
254
254
self .block_type = block_type
255
255
self .use_pre_activation = use_pre_activation
256
256
self .include_rescaling = include_rescaling
257
- self .input_image_shape = input_image_shape
257
+ self .image_shape = image_shape
258
258
self .pooling = pooling
259
259
self .pyramid_outputs = pyramid_outputs
260
260
@@ -268,7 +268,7 @@ def get_config(self):
268
268
"block_type" : self .block_type ,
269
269
"use_pre_activation" : self .use_pre_activation ,
270
270
"include_rescaling" : self .include_rescaling ,
271
- "input_image_shape " : self .input_image_shape ,
271
+ "image_shape " : self .image_shape ,
272
272
"pooling" : self .pooling ,
273
273
}
274
274
)
0 commit comments