diff --git a/keras/applications/convnext.py b/keras/applications/convnext.py index 8304d776e5d7..7e5e209bf200 100644 --- a/keras/applications/convnext.py +++ b/keras/applications/convnext.py @@ -124,7 +124,7 @@ Args: include_top: Whether to include the fully-connected - layer at the top of the network. Defaults to True. + layer at the top of the network. Defaults to `True`. weights: One of `None` (random initialization), `"imagenet"` (pre-training on ImageNet-1k), or the path to the weights file to be loaded. Defaults to `"imagenet"`. @@ -135,7 +135,7 @@ if `include_top` is False. It should have exactly 3 inputs channels. pooling: Optional pooling mode for feature extraction - when `include_top` is `False`. Defaults to None. + when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling @@ -144,16 +144,16 @@ the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. + Defaults to `None`. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and - if no `weights` argument is specified. Defaults to 1000 (number of - ImageNet classes). + if no `weights` argument is specified. 1000 is how many + ImageNet classes there are. Defaults to `1000`. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. - Defaults to `"softmax"`. When loading pretrained weights, `classifier_activation` can only - be `None` or `"softmax"`. + be `None` or `"softmax"`. Defaults to `"softmax"`. Returns: A `keras.Model` instance. @@ -754,10 +754,10 @@ def preprocess_input(x, data_format=None): Args: x: A floating point `numpy.array` or a `tf.Tensor`. - data_format: Optional data format of the image tensor/array. Defaults to - None, in which case the global setting - `tf.keras.backend.image_data_format()` is used (unless you changed it, - it defaults to "channels_last").{mode} + data_format: Optional data format of the image tensor/array. `None` means + the global setting `tf.keras.backend.image_data_format()` is used + (unless you changed it, it uses "channels_last").{mode}. + Defaults to `None`. Returns: Unchanged `numpy.array` or `tf.Tensor`.