You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
bpf, sockmap: Fix preempt_rt splat when using raw_spin_lock_t
Sockmap and sockhash maps are a collection of psocks that are
objects representing a socket plus a set of metadata needed
to manage the BPF programs associated with the socket. These
maps use the stab->lock to protect from concurrent operations
on the maps, e.g. trying to insert to objects into the array
at the same time in the same slot. Additionally, a sockhash map
has a bucket lock to protect iteration and insert/delete into
the hash entry.
Each psock has a psock->link which is a linked list of all the
maps that a psock is attached to. This allows a psock (socket)
to be included in multiple sockmap and sockhash maps. This
linked list is protected the psock->link_lock.
They _must_ be nested correctly to avoid deadlock:
lock(stab->lock)
: do BPF map operations and psock insert/delete
lock(psock->link_lock)
: add map to psock linked list of maps
unlock(psock->link_lock)
unlock(stab->lock)
For non PREEMPT_RT kernels both raw_spin_lock_t and spin_lock_t
are guaranteed to not sleep. But, with PREEMPT_RT kernels the
spin_lock_t variants may sleep. In the current code we have
many patterns like this:
rcu_critical_section:
raw_spin_lock(stab->lock)
spin_lock(psock->link_lock) <- may sleep ouch
spin_unlock(psock->link_lock)
raw_spin_unlock(stab->lock)
rcu_critical_section
Nesting spin_lock() inside a raw_spin_lock() violates locking
rules for PREEMPT_RT kernels. And additionally we do alloc(GFP_ATOMICS)
inside the stab->lock, but those might sleep on PREEMPT_RT kernels.
The result is splats like this:
./test_progs -t sockmap_basic
[ 33.344330] bpf_testmod: loading out-of-tree module taints kernel.
[ 33.441933]
[ 33.442089] =============================
[ 33.442421] [ BUG: Invalid wait context ]
[ 33.442763] 6.5.0-rc5-01731-gec0ded2e0282 #4958 Tainted: G O
[ 33.443320] -----------------------------
[ 33.443624] test_progs/2073 is trying to lock:
[ 33.443960] ffff888102a1c290 (&psock->link_lock){....}-{3:3}, at: sock_map_update_common+0x2c2/0x3d0
[ 33.444636] other info that might help us debug this:
[ 33.444991] context-{5:5}
[ 33.445183] 3 locks held by test_progs/2073:
[ 33.445498] #0: ffff88811a208d30 (sk_lock-AF_INET){+.+.}-{0:0}, at: sock_map_update_elem_sys+0xff/0x330
[ 33.446159] #1: ffffffff842539e0 (rcu_read_lock){....}-{1:3}, at: sock_map_update_elem_sys+0xf5/0x330
[ 33.446809] #2: ffff88810d687240 (&stab->lock){+...}-{2:2}, at: sock_map_update_common+0x177/0x3d0
[ 33.447445] stack backtrace:
[ 33.447655] CPU: 10 PID
To fix observe we can't readily remove the allocations (for that
we would need to use/create something similar to bpf_map_alloc). So
convert raw_spin_lock_t to spin_lock_t. We note that sock_map_update
that would trigger the allocate and potential sleep is only allowed
through sys_bpf ops and via sock_ops which precludes hw interrupts
and low level atomic sections in RT preempt kernel. On non RT
preempt kernel there are no changes here and spin locks sections
and alloc(GFP_ATOMIC) are still not sleepable.
Signed-off-by: John Fastabend <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
0 commit comments