diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h index d19687ec9afee..aceb9d059b95f 100644 --- a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h +++ b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h @@ -11,7 +11,6 @@ #include "mlir/IR/Operation.h" #include "mlir/IR/PatternMatch.h" -#include "mlir/Interfaces/FunctionInterfaces.h" #include "mlir/Support/LLVM.h" #include "llvm/ADT/DenseMapInfoVariant.h" #include "llvm/ADT/SetVector.h" @@ -261,9 +260,9 @@ struct BufferizationOptions { using AnalysisStateInitFn = std::function; /// Tensor -> MemRef type converter. /// Parameters: Value, memory space, func op, bufferization options - using FunctionArgTypeConverterFn = std::function; + using FunctionArgTypeConverterFn = + std::function; /// Tensor -> MemRef type converter. /// Parameters: Value, memory space, bufferization options using UnknownTypeConverterFn = std::function equivalentFuncArgs; + DenseMap equivalentFuncArgs; /// A mapping of FuncOp BBArg indices to aliasing ReturnOp OpOperand indices. - DenseMap aliasingReturnVals; + DenseMap aliasingReturnVals; /// A set of all read BlockArguments of FuncOps. - DenseMap readBbArgs; + DenseMap readBbArgs; /// A set of all written-to BlockArguments of FuncOps. - DenseMap writtenBbArgs; + DenseMap writtenBbArgs; /// Keep track of which FuncOps are fully analyzed or currently being /// analyzed. - DenseMap analyzedFuncOps; + DenseMap analyzedFuncOps; /// This function is called right before analyzing the given FuncOp. It /// initializes the data structures for the FuncOp in this state object. - void startFunctionAnalysis(FunctionOpInterface funcOp); + void startFunctionAnalysis(FuncOp funcOp); }; void registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry); diff --git a/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp index 92f757111cbaf..85604eef2f283 100644 --- a/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp +++ b/mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp @@ -18,7 +18,6 @@ #include "mlir/IR/TypeUtilities.h" #include "mlir/IR/Value.h" #include "mlir/Interfaces/ControlFlowInterfaces.h" -#include "mlir/Interfaces/FunctionInterfaces.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/Debug.h" @@ -315,7 +314,7 @@ namespace { /// Default function arg type converter: Use a fully dynamic layout map. BaseMemRefType defaultFunctionArgTypeConverter(TensorType type, Attribute memorySpace, - FunctionOpInterface funcOp, + func::FuncOp funcOp, const BufferizationOptions &options) { return getMemRefTypeWithFullyDynamicLayout(type, memorySpace); } @@ -362,7 +361,7 @@ BufferizationOptions::dynCastBufferizableOp(Value value) const { void BufferizationOptions::setFunctionBoundaryTypeConversion( LayoutMapOption layoutMapOption) { functionArgTypeConverterFn = [=](TensorType tensorType, Attribute memorySpace, - FunctionOpInterface funcOp, + func::FuncOp funcOp, const BufferizationOptions &options) { if (layoutMapOption == LayoutMapOption::IdentityLayoutMap) return bufferization::getMemRefTypeWithStaticIdentityLayout(tensorType, diff --git a/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp index 9749a71f3514b..9fbe574ec392d 100644 --- a/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp +++ b/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp @@ -22,7 +22,7 @@ namespace mlir { namespace bufferization { namespace func_ext { -void FuncAnalysisState::startFunctionAnalysis(FunctionOpInterface funcOp) { +void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) { analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress; auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping()); auto createdAliasingResults = diff --git a/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp b/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp index a0e5c7fff7690..0a4072605c265 100644 --- a/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp +++ b/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp @@ -75,7 +75,7 @@ using namespace mlir::bufferization; using namespace mlir::bufferization::func_ext; /// A mapping of FuncOps to their callers. -using FuncCallerMap = DenseMap>; +using FuncCallerMap = DenseMap>; /// Get or create FuncAnalysisState. static FuncAnalysisState & @@ -88,11 +88,10 @@ getOrCreateFuncAnalysisState(OneShotAnalysisState &state) { /// Return the unique ReturnOp that terminates `funcOp`. /// Return nullptr if there is no such unique ReturnOp. -static Operation *getAssumedUniqueReturnOp(FunctionOpInterface funcOp) { - Operation *returnOp = nullptr; - for (Block &b : funcOp.getFunctionBody()) { - auto candidateOp = b.getTerminator(); - if (candidateOp && candidateOp->hasTrait()) { +static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) { + func::ReturnOp returnOp; + for (Block &b : funcOp.getBody()) { + if (auto candidateOp = dyn_cast(b.getTerminator())) { if (returnOp) return nullptr; returnOp = candidateOp; @@ -127,16 +126,16 @@ static void annotateEquivalentReturnBbArg(OpOperand &returnVal, /// Store function BlockArguments that are equivalent to/aliasing a returned /// value in FuncAnalysisState. static LogicalResult -aliasingFuncOpBBArgsAnalysis(FunctionOpInterface funcOp, - OneShotAnalysisState &state, +aliasingFuncOpBBArgsAnalysis(FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { - if (funcOp.getFunctionBody().empty()) { + if (funcOp.getBody().empty()) { // No function body available. Conservatively assume that every tensor // return value may alias with any tensor bbArg. - for (const auto &inputIt : llvm::enumerate(funcOp.getArgumentTypes())) { + FunctionType type = funcOp.getFunctionType(); + for (const auto &inputIt : llvm::enumerate(type.getInputs())) { if (!isa(inputIt.value())) continue; - for (const auto &resultIt : llvm::enumerate(funcOp.getResultTypes())) { + for (const auto &resultIt : llvm::enumerate(type.getResults())) { if (!isa(resultIt.value())) continue; int64_t returnIdx = resultIt.index(); @@ -148,7 +147,7 @@ aliasingFuncOpBBArgsAnalysis(FunctionOpInterface funcOp, } // Support only single return-terminated block in the function. - Operation *returnOp = getAssumedUniqueReturnOp(funcOp); + func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); assert(returnOp && "expected func with single return op"); for (OpOperand &returnVal : returnOp->getOpOperands()) @@ -169,8 +168,8 @@ aliasingFuncOpBBArgsAnalysis(FunctionOpInterface funcOp, return success(); } -static void annotateFuncArgAccess(FunctionOpInterface funcOp, int64_t idx, - bool isRead, bool isWritten) { +static void annotateFuncArgAccess(func::FuncOp funcOp, int64_t idx, bool isRead, + bool isWritten) { OpBuilder b(funcOp.getContext()); Attribute accessType; if (isRead && isWritten) { @@ -190,12 +189,12 @@ static void annotateFuncArgAccess(FunctionOpInterface funcOp, int64_t idx, /// function with unknown ops, we conservatively assume that such ops bufferize /// to a read + write. static LogicalResult -funcOpBbArgReadWriteAnalysis(FunctionOpInterface funcOp, - OneShotAnalysisState &state, +funcOpBbArgReadWriteAnalysis(FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { - for (int64_t idx = 0, e = funcOp.getNumArguments(); idx < e; ++idx) { + for (int64_t idx = 0, e = funcOp.getFunctionType().getNumInputs(); idx < e; + ++idx) { // Skip non-tensor arguments. - if (!isa(funcOp.getArgumentTypes()[idx])) + if (!isa(funcOp.getFunctionType().getInput(idx))) continue; bool isRead; bool isWritten; @@ -205,7 +204,7 @@ funcOpBbArgReadWriteAnalysis(FunctionOpInterface funcOp, StringRef str = accessAttr.getValue(); isRead = str == "read" || str == "read-write"; isWritten = str == "write" || str == "read-write"; - } else if (funcOp.getFunctionBody().empty()) { + } else if (funcOp.getBody().empty()) { // If the function has no body, conservatively assume that all args are // read + written. isRead = true; @@ -231,19 +230,20 @@ funcOpBbArgReadWriteAnalysis(FunctionOpInterface funcOp, /// Remove bufferization attributes on FuncOp arguments. static void removeBufferizationAttributes(BlockArgument bbArg) { - auto funcOp = cast(bbArg.getOwner()->getParentOp()); + auto funcOp = cast(bbArg.getOwner()->getParentOp()); funcOp.removeArgAttr(bbArg.getArgNumber(), BufferizationDialect::kBufferLayoutAttrName); funcOp.removeArgAttr(bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName); } -static FunctionOpInterface getCalledFunction(CallOpInterface callOp) { +/// Return the func::FuncOp called by `callOp`. +static func::FuncOp getCalledFunction(func::CallOp callOp) { SymbolRefAttr sym = llvm::dyn_cast_if_present(callOp.getCallableForCallee()); if (!sym) return nullptr; - return dyn_cast_or_null( + return dyn_cast_or_null( SymbolTable::lookupNearestSymbolFrom(callOp, sym)); } @@ -251,13 +251,12 @@ static FunctionOpInterface getCalledFunction(CallOpInterface callOp) { /// Note: This only adds new equivalence info if the called function was already /// analyzed. // TODO: This does not handle cyclic function call graphs etc. -static void equivalenceAnalysis(FunctionOpInterface funcOp, +static void equivalenceAnalysis(func::FuncOp funcOp, OneShotAnalysisState &state, FuncAnalysisState &funcState) { - funcOp->walk([&](CallOpInterface callOp) { - FunctionOpInterface calledFunction = getCalledFunction(callOp); - if (!calledFunction) - return WalkResult::skip(); + funcOp->walk([&](func::CallOp callOp) { + func::FuncOp calledFunction = getCalledFunction(callOp); + assert(calledFunction && "could not retrieved called func::FuncOp"); // No equivalence info available for the called function. if (!funcState.equivalentFuncArgs.count(calledFunction)) @@ -268,7 +267,7 @@ static void equivalenceAnalysis(FunctionOpInterface funcOp, int64_t bbargIdx = it.second; if (!state.isInPlace(callOp->getOpOperand(bbargIdx))) continue; - Value returnVal = callOp->getResult(returnIdx); + Value returnVal = callOp.getResult(returnIdx); Value argVal = callOp->getOperand(bbargIdx); state.unionEquivalenceClasses(returnVal, argVal); } @@ -278,9 +277,11 @@ static void equivalenceAnalysis(FunctionOpInterface funcOp, } /// Return "true" if the given function signature has tensor semantics. -static bool hasTensorSignature(FunctionOpInterface funcOp) { - return llvm::any_of(funcOp.getArgumentTypes(), llvm::IsaPred) || - llvm::any_of(funcOp.getResultTypes(), llvm::IsaPred); +static bool hasTensorSignature(func::FuncOp funcOp) { + return llvm::any_of(funcOp.getFunctionType().getInputs(), + llvm::IsaPred) || + llvm::any_of(funcOp.getFunctionType().getResults(), + llvm::IsaPred); } /// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by @@ -290,16 +291,16 @@ static bool hasTensorSignature(FunctionOpInterface funcOp) { /// retrieve the called FuncOp from any func::CallOp. static LogicalResult getFuncOpsOrderedByCalls(ModuleOp moduleOp, - SmallVectorImpl &orderedFuncOps, + SmallVectorImpl &orderedFuncOps, FuncCallerMap &callerMap) { // For each FuncOp, the set of functions called by it (i.e. the union of // symbols of all nested func::CallOp). - DenseMap> calledBy; + DenseMap> calledBy; // For each FuncOp, the number of func::CallOp it contains. - DenseMap numberCallOpsContainedInFuncOp; - WalkResult res = moduleOp.walk([&](FunctionOpInterface funcOp) -> WalkResult { - if (!funcOp.getFunctionBody().empty()) { - Operation *returnOp = getAssumedUniqueReturnOp(funcOp); + DenseMap numberCallOpsContainedInFuncOp; + WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult { + if (!funcOp.getBody().empty()) { + func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); if (!returnOp) return funcOp->emitError() << "cannot bufferize a FuncOp with tensors and " @@ -308,10 +309,9 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp, // Collect function calls and populate the caller map. numberCallOpsContainedInFuncOp[funcOp] = 0; - return funcOp.walk([&](CallOpInterface callOp) -> WalkResult { - FunctionOpInterface calledFunction = getCalledFunction(callOp); - if (!calledFunction) - return WalkResult::skip(); + return funcOp.walk([&](func::CallOp callOp) -> WalkResult { + func::FuncOp calledFunction = getCalledFunction(callOp); + assert(calledFunction && "could not retrieved called func::FuncOp"); // If the called function does not have any tensors in its signature, then // it is not necessary to bufferize the callee before the caller. if (!hasTensorSignature(calledFunction)) @@ -349,11 +349,11 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp, /// most generic layout map as function return types. After bufferizing the /// entire function body, a more concise memref type can potentially be used for /// the return type of the function. -static void foldMemRefCasts(FunctionOpInterface funcOp) { - if (funcOp.getFunctionBody().empty()) +static void foldMemRefCasts(func::FuncOp funcOp) { + if (funcOp.getBody().empty()) return; - Operation *returnOp = getAssumedUniqueReturnOp(funcOp); + func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp); SmallVector resultTypes; for (OpOperand &operand : returnOp->getOpOperands()) { @@ -365,8 +365,8 @@ static void foldMemRefCasts(FunctionOpInterface funcOp) { } } - auto newFuncType = FunctionType::get(funcOp.getContext(), - funcOp.getArgumentTypes(), resultTypes); + auto newFuncType = FunctionType::get( + funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes); funcOp.setType(newFuncType); } @@ -379,7 +379,7 @@ mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp, FuncAnalysisState &funcState = getOrCreateFuncAnalysisState(state); // A list of functions in the order in which they are analyzed + bufferized. - SmallVector orderedFuncOps; + SmallVector orderedFuncOps; // A mapping of FuncOps to their callers. FuncCallerMap callerMap; @@ -388,7 +388,7 @@ mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp, return failure(); // Analyze ops. - for (FunctionOpInterface funcOp : orderedFuncOps) { + for (func::FuncOp funcOp : orderedFuncOps) { if (!state.getOptions().isOpAllowed(funcOp)) continue; @@ -416,7 +416,7 @@ mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp, void mlir::bufferization::removeBufferizationAttributesInModule( ModuleOp moduleOp) { - moduleOp.walk([&](FunctionOpInterface op) { + moduleOp.walk([&](func::FuncOp op) { for (BlockArgument bbArg : op.getArguments()) removeBufferizationAttributes(bbArg); }); @@ -430,7 +430,7 @@ LogicalResult mlir::bufferization::bufferizeModuleOp( IRRewriter rewriter(moduleOp.getContext()); // A list of functions in the order in which they are analyzed + bufferized. - SmallVector orderedFuncOps; + SmallVector orderedFuncOps; // A mapping of FuncOps to their callers. FuncCallerMap callerMap; @@ -439,11 +439,11 @@ LogicalResult mlir::bufferization::bufferizeModuleOp( return failure(); // Bufferize functions. - for (FunctionOpInterface funcOp : orderedFuncOps) { + for (func::FuncOp funcOp : orderedFuncOps) { // Note: It would be good to apply cleanups here but we cannot as aliasInfo // would be invalidated. - if (llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getName())) { + if (llvm::is_contained(options.noAnalysisFuncFilter, funcOp.getSymName())) { // This function was not analyzed and RaW conflicts were not resolved. // Buffer copies must be inserted before every write. OneShotBufferizationOptions updatedOptions = options; @@ -463,7 +463,7 @@ LogicalResult mlir::bufferization::bufferizeModuleOp( // Bufferize all other ops. for (Operation &op : llvm::make_early_inc_range(moduleOp.getOps())) { // Functions were already bufferized. - if (isa(&op)) + if (isa(&op)) continue; if (failed(bufferizeOp(&op, options, statistics))) return failure(); @@ -490,12 +490,12 @@ LogicalResult mlir::bufferization::runOneShotModuleBufferize( // FuncOps whose names are specified in options.noAnalysisFuncFilter will // not be analyzed. Ops in these FuncOps will not be analyzed as well. OpFilter::Entry::FilterFn analysisFilterFn = [=](Operation *op) { - auto func = dyn_cast(op); + auto func = dyn_cast(op); if (!func) - func = op->getParentOfType(); + func = op->getParentOfType(); if (func) return llvm::is_contained(options.noAnalysisFuncFilter, - func.getName()); + func.getSymName()); return false; }; OneShotBufferizationOptions updatedOptions(options); diff --git a/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir b/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir index 588aa8a85a84e..3c50a9e72d9d9 100644 --- a/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir +++ b/mlir/test/Dialect/Bufferization/Transforms/transform-ops.mlir @@ -1,4 +1,4 @@ -// RUN: mlir-opt --transform-interpreter="debug-payload-root-tag=payload" %s -split-input-file -verify-diagnostics | FileCheck %s +// RUN: mlir-opt --transform-interpreter %s -split-input-file -verify-diagnostics | FileCheck %s // Test One-Shot Bufferize. @@ -12,21 +12,19 @@ module attributes {transform.with_named_sequence} { // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor -module @payload attributes { transform.target_tag = "payload" } { - func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { - %c0 = arith.constant 0 : index +func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { + %c0 = arith.constant 0 : index - // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] - // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] - // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) - // CHECK: memref.copy %[[A_memref]], %[[alloc]] - // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] - // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] - %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor + // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] + // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] + // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) + // CHECK: memref.copy %[[A_memref]], %[[alloc]] + // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] + // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] + %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor - // CHECK: return %[[res_tensor]] - return %0 : tensor - } + // CHECK: return %[[res_tensor]] + return %0 : tensor } // ----- @@ -44,21 +42,19 @@ module attributes {transform.with_named_sequence} { // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor // CHECK-NOT: memref.copy -module @payload attributes { transform.target_tag = "payload" } { - func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { - %c0 = arith.constant 0 : index +func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { + %c0 = arith.constant 0 : index - // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] - // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] - // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) - // CHECK: linalg.copy ins(%[[A_memref]] : memref<{{.*}}>) outs(%[[alloc]] - // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] - // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] - %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor + // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]] + // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]] + // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]]) + // CHECK: linalg.copy ins(%[[A_memref]] : memref<{{.*}}>) outs(%[[alloc]] + // CHECK: vector.transfer_write %{{.*}}, %[[alloc]] + // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]] + %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor - // CHECK: return %[[res_tensor]] - return %0 : tensor - } + // CHECK: return %[[res_tensor]] + return %0 : tensor } // ----- @@ -76,15 +72,13 @@ module attributes {transform.with_named_sequence} { // CHECK-LABEL: func @test_function_analysis( // CHECK-SAME: %[[A:.*]]: tensor -module @payload attributes { transform.target_tag = "payload" } { - func.func @test_function_analysis(%A : tensor, %v : vector<4xf32>) -> (tensor) { - %c0 = arith.constant 0 : index - // CHECK: vector.transfer_write - // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]} - // CHECK-SAME: tensor - %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor - return %0 : tensor - } +func.func @test_function_analysis(%A : tensor, %v : vector<4xf32>) -> (tensor) { + %c0 = arith.constant 0 : index + // CHECK: vector.transfer_write + // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]} + // CHECK-SAME: tensor + %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor + return %0 : tensor } // ----- @@ -101,12 +95,10 @@ module attributes {transform.with_named_sequence} { } } -module @payload attributes { transform.target_tag = "payload" } { - func.func @test_unknown_op_failure() -> (tensor) { - // expected-error @+1 {{op was not bufferized}} - %0 = "test.dummy_op"() : () -> (tensor) - return %0 : tensor - } +func.func @test_unknown_op_failure() -> (tensor) { + // expected-error @+1 {{op was not bufferized}} + %0 = "test.dummy_op"() : () -> (tensor) + return %0 : tensor } // ----- @@ -119,7 +111,7 @@ module attributes {transform.with_named_sequence} { } } -module @payload attributes { transform.target_tag = "payload" } { +module { // CHECK-LABEL: func @test_function( // CHECK-SAME: %[[A:.*]]: tensor func.func @test_function(%A : tensor, %v : vector<4xf32>) -> (tensor) { @@ -154,13 +146,11 @@ module attributes {transform.with_named_sequence} { // CHECK-SAME: %[[A:.*]]: memref<12x9xf32>, // CHECK-SAME: %[[B:.*]]: memref<9x6xf32>, // CHECK-SAME: %[[C:.*]]: memref<12x6xf32>) -> memref<12x6xf32> { -module @payload attributes { transform.target_tag = "payload" } { - func.func @matmul(%A: tensor<12x9xf32>, %B: tensor<9x6xf32>, %C: tensor<12x6xf32>) -> tensor<12x6xf32> { - // CHECK: linalg.matmul ins(%[[A]], %[[B]] : memref<12x9xf32>, memref<9x6xf32>) outs(%[[C]] : memref<12x6xf32>) - %D = linalg.matmul ins(%A, %B: tensor<12x9xf32>, tensor<9x6xf32>) outs(%C: tensor<12x6xf32>) -> tensor<12x6xf32> - // CHECK: return %[[C]] : memref<12x6xf32> - return %D : tensor<12x6xf32> - } +func.func @matmul(%A: tensor<12x9xf32>, %B: tensor<9x6xf32>, %C: tensor<12x6xf32>) -> tensor<12x6xf32> { + // CHECK: linalg.matmul ins(%[[A]], %[[B]] : memref<12x9xf32>, memref<9x6xf32>) outs(%[[C]] : memref<12x6xf32>) + %D = linalg.matmul ins(%A, %B: tensor<12x9xf32>, tensor<9x6xf32>) outs(%C: tensor<12x6xf32>) -> tensor<12x6xf32> + // CHECK: return %[[C]] : memref<12x6xf32> + return %D : tensor<12x6xf32> } // ----- @@ -175,12 +165,10 @@ module attributes {transform.with_named_sequence} { } // Expect `bufferization.empty_tensor_to_alloc_tensor` to replace the tensor.empty. -module @payload attributes { transform.target_tag = "payload" } { - func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { - // CHECK: bufferization.alloc_tensor - %0 = tensor.empty() : tensor<2x2xf32> - return %0 : tensor<2x2xf32> - } +func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { + // CHECK: bufferization.alloc_tensor + %0 = tensor.empty() : tensor<2x2xf32> + return %0 : tensor<2x2xf32> } // ----- @@ -197,15 +185,13 @@ module attributes {transform.with_named_sequence} { // CHECK: tensor.extract_slice // CHECK: linalg.fill // CHECK: tensor.insert_slice -module @payload attributes { transform.target_tag = "payload" } { - func.func @empty_tensor_elimination( - %t: tensor<10xf32>, %f: f32) -> tensor<10xf32> { - %0 = tensor.empty() : tensor<5xf32> - %1 = linalg.fill ins(%f : f32) outs(%0 : tensor<5xf32>) -> tensor<5xf32> - %2 = tensor.insert_slice %1 into %t [1][5][1] - : tensor<5xf32> into tensor<10xf32> - return %2 : tensor<10xf32> - } +func.func @empty_tensor_elimination( + %t: tensor<10xf32>, %f: f32) -> tensor<10xf32> { + %0 = tensor.empty() : tensor<5xf32> + %1 = linalg.fill ins(%f : f32) outs(%0 : tensor<5xf32>) -> tensor<5xf32> + %2 = tensor.insert_slice %1 into %t [1][5][1] + : tensor<5xf32> into tensor<10xf32> + return %2 : tensor<10xf32> } // ----- @@ -222,14 +208,12 @@ module attributes {transform.with_named_sequence} { // CHECK: memref.alloca // CHECK: scf.for // CHECK: memref.store -module @payload attributes { transform.target_tag = "payload" } { - func.func @buffer_loop_hoisting(%lb: index, %ub: index, %step: index, %f: f32, %pos: index) { - scf.for %iv = %lb to %ub step %step { - %0 = memref.alloca() : memref<5xf32> - memref.store %f, %0[%pos] : memref<5xf32> - } - return +func.func @buffer_loop_hoisting(%lb: index, %ub: index, %step: index, %f: f32, %pos: index) { + scf.for %iv = %lb to %ub step %step { + %0 = memref.alloca() : memref<5xf32> + memref.store %f, %0[%pos] : memref<5xf32> } + return } // ----- @@ -247,12 +231,10 @@ module attributes {transform.with_named_sequence} { // Expect `bufferization.bufferize_to_allocation` to create an alloc. // CHECK-LABEL: func.func @empty_to_tensor_alloc() -module @payload attributes { transform.target_tag = "payload" } { - func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { - // CHECK-NEXT: %[[alloca:.*]] = memref.alloca() : memref<2x2xf32> - // CHECK-NEXT: %[[tensor:.*]] = bufferization.to_tensor %[[alloca]] restrict writable : memref<2x2xf32> - // CHECK-NEXT: return %[[tensor]] : tensor<2x2xf32> - %0 = bufferization.alloc_tensor() : tensor<2x2xf32> - return %0 : tensor<2x2xf32> - } +func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> { + // CHECK-NEXT: %[[alloca:.*]] = memref.alloca() : memref<2x2xf32> + // CHECK-NEXT: %[[tensor:.*]] = bufferization.to_tensor %[[alloca]] restrict writable : memref<2x2xf32> + // CHECK-NEXT: return %[[tensor]] : tensor<2x2xf32> + %0 = bufferization.alloc_tensor() : tensor<2x2xf32> + return %0 : tensor<2x2xf32> } diff --git a/mlir/test/Dialect/LLVM/transform-e2e.mlir b/mlir/test/Dialect/LLVM/transform-e2e.mlir index 3e637a3ec49a4..c00b47fb936e9 100644 --- a/mlir/test/Dialect/LLVM/transform-e2e.mlir +++ b/mlir/test/Dialect/LLVM/transform-e2e.mlir @@ -1,17 +1,15 @@ -// RUN: mlir-opt %s --transform-interpreter="debug-payload-root-tag=payload" -test-transform-dialect-erase-schedule --test-lower-to-llvm --split-input-file | FileCheck %s +// RUN: mlir-opt %s --transform-interpreter -test-transform-dialect-erase-schedule --test-lower-to-llvm --split-input-file | FileCheck %s // CHECK-LABEL: llvm.func @matmul_tensors -module @payload attributes { transform.target_tag = "payload" } { - func.func @matmul_tensors( - %arg0: tensor<2x4xf32>, %arg1: tensor<4x6xf32>, %arg2: tensor<2x6xf32>) - -> tensor<2x6xf32> { - // CHECK-NOT: linalg - // CHECK: llvm.intr.fmuladd{{.*}} - %0 = linalg.matmul ins(%arg0, %arg1: tensor<2x4xf32>, tensor<4x6xf32>) - outs(%arg2: tensor<2x6xf32>) - -> tensor<2x6xf32> - return %0 : tensor<2x6xf32> - } +func.func @matmul_tensors( + %arg0: tensor<2x4xf32>, %arg1: tensor<4x6xf32>, %arg2: tensor<2x6xf32>) + -> tensor<2x6xf32> { +// CHECK-NOT: linalg +// CHECK: llvm.intr.fmuladd{{.*}} + %0 = linalg.matmul ins(%arg0, %arg1: tensor<2x4xf32>, tensor<4x6xf32>) + outs(%arg2: tensor<2x6xf32>) + -> tensor<2x6xf32> + return %0 : tensor<2x6xf32> } module attributes {transform.with_named_sequence} { diff --git a/mlir/test/Dialect/Linalg/matmul-shared-memory-padding.mlir b/mlir/test/Dialect/Linalg/matmul-shared-memory-padding.mlir index 8a3bb1bc52dc5..d6c400dcbf2b9 100644 --- a/mlir/test/Dialect/Linalg/matmul-shared-memory-padding.mlir +++ b/mlir/test/Dialect/Linalg/matmul-shared-memory-padding.mlir @@ -1,4 +1,4 @@ -// RUN: mlir-opt --split-input-file --transform-interpreter="debug-payload-root-tag=payload" %s | FileCheck %s +// RUN: mlir-opt --split-input-file --transform-interpreter %s | FileCheck %s // CHECK-LABEL: func @matmul_divisible // CHECK: scf.forall @@ -24,21 +24,19 @@ // CHECK: scf.forall // CHECK: vector.transfer_read // CHECK: vector.transfer_write -module @payload attributes { transform.target_tag = "payload" } { - func.func @matmul_divisible(%A: tensor<1024x1024xf32>, - %B: tensor<1024x1024xf32>, - %C: tensor<1024x1024xf32>) +func.func @matmul_divisible(%A: tensor<1024x1024xf32>, + %B: tensor<1024x1024xf32>, + %C: tensor<1024x1024xf32>) + -> tensor<1024x1024xf32> +{ + %cst = arith.constant 0.000000e+00 : f32 + %0 = linalg.fill ins(%cst : f32) + outs(%C : tensor<1024x1024xf32>) -> tensor<1024x1024xf32> - { - %cst = arith.constant 0.000000e+00 : f32 - %0 = linalg.fill ins(%cst : f32) - outs(%C : tensor<1024x1024xf32>) - -> tensor<1024x1024xf32> - %1 = linalg.matmul ins(%A, %B : tensor<1024x1024xf32>, tensor<1024x1024xf32>) - outs(%0 : tensor<1024x1024xf32>) - -> tensor<1024x1024xf32> - return %1 : tensor<1024x1024xf32> - } + %1 = linalg.matmul ins(%A, %B : tensor<1024x1024xf32>, tensor<1024x1024xf32>) + outs(%0 : tensor<1024x1024xf32>) + -> tensor<1024x1024xf32> + return %1 : tensor<1024x1024xf32> } module attributes {transform.with_named_sequence} { @@ -145,21 +143,19 @@ module attributes {transform.with_named_sequence} { // CHECK: linalg.matmul // CHECK: vector.transfer_read // CHECK: vector.transfer_write -module @payload attributes { transform.target_tag = "payload" } { func.func @matmul_not_divisible(%A: tensor<1023x1023xf32>, - %B: tensor<1023x1023xf32>, - %C: tensor<1023x1023xf32>) + %B: tensor<1023x1023xf32>, + %C: tensor<1023x1023xf32>) + -> tensor<1023x1023xf32> +{ + %cst = arith.constant 0.000000e+00 : f32 + %0 = linalg.fill ins(%cst : f32) + outs(%C : tensor<1023x1023xf32>) -> tensor<1023x1023xf32> - { - %cst = arith.constant 0.000000e+00 : f32 - %0 = linalg.fill ins(%cst : f32) - outs(%C : tensor<1023x1023xf32>) - -> tensor<1023x1023xf32> - %1 = linalg.matmul ins(%A, %B : tensor<1023x1023xf32>, tensor<1023x1023xf32>) - outs(%0 : tensor<1023x1023xf32>) - -> tensor<1023x1023xf32> - return %1 : tensor<1023x1023xf32> - } + %1 = linalg.matmul ins(%A, %B : tensor<1023x1023xf32>, tensor<1023x1023xf32>) + outs(%0 : tensor<1023x1023xf32>) + -> tensor<1023x1023xf32> + return %1 : tensor<1023x1023xf32> } module attributes {transform.with_named_sequence} { diff --git a/mlir/test/Dialect/Linalg/pad-to-specific-memory-space.mlir b/mlir/test/Dialect/Linalg/pad-to-specific-memory-space.mlir index 373ed5f0d7908..9f52cf8aa862a 100644 --- a/mlir/test/Dialect/Linalg/pad-to-specific-memory-space.mlir +++ b/mlir/test/Dialect/Linalg/pad-to-specific-memory-space.mlir @@ -1,5 +1,5 @@ -// RUN: mlir-opt --transform-interpreter="debug-payload-root-tag=payload" -cse -canonicalize -split-input-file -verify-diagnostics %s | FileCheck %s +// RUN: mlir-opt --transform-interpreter -cse -canonicalize -split-input-file -verify-diagnostics %s | FileCheck %s #map = affine_map<()[s0] -> (-s0 + 12, 7)> @@ -7,45 +7,43 @@ // CHECK-SAME: %[[arg0:.*]]: memref<24x12xf32, strided<[?, ?], offset: ?>>, // CHECK-SAME: %[[arg1:.*]]: memref<12x25xf32, strided<[?, ?], offset: ?>>, // CHECK-SAME: %[[arg2:.*]]: memref<24x25xf32, strided<[?, ?], offset: ?>>, -module @payload attributes { transform.target_tag = "payload" } { - func.func @pad_to_memory_space(%arg0: tensor<24x12xf32>, - %arg1: tensor<12x25xf32>, - %arg2: tensor<24x25xf32>, - %iv0 : index, %iv1 : index, - %iv2 : index) -> tensor<24x25xf32> { - %0 = affine.min #map()[%iv2] - - // CHECK: %[[s0:.*]] = memref.subview %[[arg0]] - %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> - // CHECK: %[[s1:.*]] = memref.subview %[[arg1]] - %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor - // CHECK: %[[s2:.*]] = memref.subview %[[arg2]] - %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> - - // CHECK: %[[alloc0:.*]] = memref.alloc() : memref<4x7xf32, 3> - // CHECK: linalg.fill {{.*}} outs(%[[alloc0]] - // CHECK: %[[alloc0_view:.*]] = memref.subview %[[alloc0]][0, 0] [4, %{{.*}}] [1, 1] - // CHECK: memref.copy %[[s0]], %[[alloc0_view]] - - // CHECK: %[[alloc1:.*]] = memref.alloc() : memref<7x5xf32, 3> - // CHECK: linalg.fill {{.*}} outs(%[[alloc1]] - // CHECK: %[[alloc1_view:.*]] = memref.subview %[[alloc1]][0, 0] [%{{.*}}, 5] [1, 1] - // CHECK: memref.copy %[[s1]], %[[alloc1_view]] - - // CHECK: %[[alloc2:.*]] = memref.alloc() : memref<4x5xf32, 3> - // CHECK-NOT: linalg.fill {{.*}} outs(%[[alloc2]] - // No subview because there is 0 padding - // CHECK: memref.copy %[[s2]], %[[alloc2]] - - // CHECK: linalg.matmul ins(%[[alloc0]], %[[alloc1]] : {{.*}}) outs(%[[alloc2]] : {{.*}}) - // Copy back result. - // CHECK: memref.copy %[[alloc2]], %[[s2]] - %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> - - // insert_slice bufferizes to a no-op. - %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> - func.return %5 : tensor<24x25xf32> - } +func.func @pad_to_memory_space(%arg0: tensor<24x12xf32>, + %arg1: tensor<12x25xf32>, + %arg2: tensor<24x25xf32>, + %iv0 : index, %iv1 : index, + %iv2 : index) -> tensor<24x25xf32> { + %0 = affine.min #map()[%iv2] + + // CHECK: %[[s0:.*]] = memref.subview %[[arg0]] + %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> + // CHECK: %[[s1:.*]] = memref.subview %[[arg1]] + %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor + // CHECK: %[[s2:.*]] = memref.subview %[[arg2]] + %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> + + // CHECK: %[[alloc0:.*]] = memref.alloc() : memref<4x7xf32, 3> + // CHECK: linalg.fill {{.*}} outs(%[[alloc0]] + // CHECK: %[[alloc0_view:.*]] = memref.subview %[[alloc0]][0, 0] [4, %{{.*}}] [1, 1] + // CHECK: memref.copy %[[s0]], %[[alloc0_view]] + + // CHECK: %[[alloc1:.*]] = memref.alloc() : memref<7x5xf32, 3> + // CHECK: linalg.fill {{.*}} outs(%[[alloc1]] + // CHECK: %[[alloc1_view:.*]] = memref.subview %[[alloc1]][0, 0] [%{{.*}}, 5] [1, 1] + // CHECK: memref.copy %[[s1]], %[[alloc1_view]] + + // CHECK: %[[alloc2:.*]] = memref.alloc() : memref<4x5xf32, 3> + // CHECK-NOT: linalg.fill {{.*}} outs(%[[alloc2]] + // No subview because there is 0 padding + // CHECK: memref.copy %[[s2]], %[[alloc2]] + + // CHECK: linalg.matmul ins(%[[alloc0]], %[[alloc1]] : {{.*}}) outs(%[[alloc2]] : {{.*}}) + // Copy back result. + // CHECK: memref.copy %[[alloc2]], %[[s2]] + %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> + + // insert_slice bufferizes to a no-op. + %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> + func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { @@ -71,42 +69,40 @@ module attributes {transform.with_named_sequence} { // CHECK-SAME: %[[arg0:.*]]: memref<24x12xf32, strided<[?, ?], offset: ?>>, // CHECK-SAME: %[[arg1:.*]]: memref<12x25xf32, strided<[?, ?], offset: ?>>, // CHECK-SAME: %[[arg2:.*]]: memref<24x25xf32, strided<[?, ?], offset: ?>>, -module @payload attributes { transform.target_tag = "payload" } { - func.func @vectorize_and_bufferize_pad(%arg0: tensor<24x12xf32>, - %arg1: tensor<12x25xf32>, - %arg2: tensor<24x25xf32>, - %iv0 : index, %iv1 : index, - %iv2 : index) -> tensor<24x25xf32> { - %0 = affine.min #map()[%iv2] - - // CHECK: %[[s0:.*]] = memref.subview %[[arg0]] - %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> - // CHECK: %[[s1:.*]] = memref.subview %[[arg1]] - %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor - // CHECK: %[[s2:.*]] = memref.subview %[[arg2]] - %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> - - // CHECK: %[[v0:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s0]] - // CHECK: %[[alloc0:.*]] = memref.alloc() : memref<4x7xf32, 3> - // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v0]], %[[alloc0]] - - // CHECK: %[[v1:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s1]] - // CHECK: %[[alloc1:.*]] = memref.alloc() : memref<7x5xf32, 3> - // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v1]], %[[alloc1]] - - // CHECK: %[[v2:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s2]] - // CHECK: %[[alloc2:.*]] = memref.alloc() : memref<4x5xf32, 3> - // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v2]], %[[alloc0]] - - // CHECK: linalg.matmul ins(%[[alloc0]], %[[alloc1]] : {{.*}}) outs(%[[alloc2]] : {{.*}}) - // Copy back result. - // CHECK: memref.copy %[[alloc2]], %[[s2]] - %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> - - // insert_slice bufferizes to a no-op. - %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> - func.return %5 : tensor<24x25xf32> - } +func.func @vectorize_and_bufferize_pad(%arg0: tensor<24x12xf32>, + %arg1: tensor<12x25xf32>, + %arg2: tensor<24x25xf32>, + %iv0 : index, %iv1 : index, + %iv2 : index) -> tensor<24x25xf32> { + %0 = affine.min #map()[%iv2] + + // CHECK: %[[s0:.*]] = memref.subview %[[arg0]] + %1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> + // CHECK: %[[s1:.*]] = memref.subview %[[arg1]] + %2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor + // CHECK: %[[s2:.*]] = memref.subview %[[arg2]] + %3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32> + + // CHECK: %[[v0:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s0]] + // CHECK: %[[alloc0:.*]] = memref.alloc() : memref<4x7xf32, 3> + // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v0]], %[[alloc0]] + + // CHECK: %[[v1:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s1]] + // CHECK: %[[alloc1:.*]] = memref.alloc() : memref<7x5xf32, 3> + // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v1]], %[[alloc1]] + + // CHECK: %[[v2:.*]] = vector.mask {{.*}} { vector.transfer_read %[[s2]] + // CHECK: %[[alloc2:.*]] = memref.alloc() : memref<4x5xf32, 3> + // CHECK: vector.mask {{.*}} { vector.transfer_write %[[v2]], %[[alloc0]] + + // CHECK: linalg.matmul ins(%[[alloc0]], %[[alloc1]] : {{.*}}) outs(%[[alloc2]] : {{.*}}) + // Copy back result. + // CHECK: memref.copy %[[alloc2]], %[[s2]] + %4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32> + + // insert_slice bufferizes to a no-op. + %5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> + func.return %5 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { diff --git a/mlir/test/Dialect/Vector/transform-vector.mlir b/mlir/test/Dialect/Vector/transform-vector.mlir index 0439844dc66ca..4b38db79bff3e 100644 --- a/mlir/test/Dialect/Vector/transform-vector.mlir +++ b/mlir/test/Dialect/Vector/transform-vector.mlir @@ -1,18 +1,16 @@ -// RUN: mlir-opt --transform-interpreter="debug-payload-root-tag=payload" %s --split-input-file | FileCheck %s +// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s // CHECK-LABEL: func @matmul_tensors -module @payload attributes { transform.target_tag = "payload" } { - func.func @matmul_tensors( - %arg0: tensor<8x16xf32>, %arg1: tensor<16x32xf32>, %arg2: tensor<8x32xf32>) - -> tensor<8x32xf32> { - // CHECK-NOT: linalg - // CHECK: vector.extract {{.*}} : vector<4xf32> from vector<8x4xf32> - // CHECK: vector.store {{.*}} : memref<8x32xf32>, vector<4xf32> - %0 = linalg.matmul ins(%arg0, %arg1: tensor<8x16xf32>, tensor<16x32xf32>) - outs(%arg2: tensor<8x32xf32>) - -> tensor<8x32xf32> - return %0 : tensor<8x32xf32> - } +func.func @matmul_tensors( + %arg0: tensor<8x16xf32>, %arg1: tensor<16x32xf32>, %arg2: tensor<8x32xf32>) + -> tensor<8x32xf32> { +// CHECK-NOT: linalg +// CHECK: vector.extract {{.*}} : vector<4xf32> from vector<8x4xf32> +// CHECK: vector.store {{.*}} : memref<8x32xf32>, vector<4xf32> + %0 = linalg.matmul ins(%arg0, %arg1: tensor<8x16xf32>, tensor<16x32xf32>) + outs(%arg2: tensor<8x32xf32>) + -> tensor<8x32xf32> + return %0 : tensor<8x32xf32> } module attributes {transform.with_named_sequence} { @@ -78,13 +76,11 @@ module attributes {transform.with_named_sequence} { // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} // CHECK-SAME: %[[ARG0]], %[[ARG1]], %[[ARG2]] : vector<64x64xf16>, vector<64x64xf16> into vector<64x64xf32> // CHECK-NEXT: return %[[R]] : vector<64x64xf32> -module @payload attributes { transform.target_tag = "payload" } { - func.func @fold_arith_extf_into_contract(%arg0: vector<64x64xf16>, %arg1: vector<64x64xf16>, %arg2: vector<64x64xf32>) -> vector<64x64xf32> { - %lhs_f32 = arith.extf %arg0 : vector<64x64xf16> to vector<64x64xf32> - %rhs_f32 = arith.extf %arg1 : vector<64x64xf16> to vector<64x64xf32> - %result = vector.contract {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %lhs_f32, %rhs_f32, %arg2 : vector<64x64xf32>, vector<64x64xf32> into vector<64x64xf32> - return %result : vector<64x64xf32> - } +func.func @fold_arith_extf_into_contract(%arg0: vector<64x64xf16>, %arg1: vector<64x64xf16>, %arg2: vector<64x64xf32>) -> vector<64x64xf32> { + %lhs_f32 = arith.extf %arg0 : vector<64x64xf16> to vector<64x64xf32> + %rhs_f32 = arith.extf %arg1 : vector<64x64xf16> to vector<64x64xf32> + %result = vector.contract {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %lhs_f32, %rhs_f32, %arg2 : vector<64x64xf32>, vector<64x64xf32> into vector<64x64xf32> + return %result : vector<64x64xf32> } module attributes {transform.with_named_sequence} { @@ -99,32 +95,30 @@ module attributes {transform.with_named_sequence} { // ----- -module @payload attributes { transform.target_tag = "payload" } { - // CHECK-LABEL: func.func @arith_to_outerproduct_scalable_i32 - // CHECK-SAME: %[[LHS:.*]]: vector<[4]xi32>, - // CHECK-SAME: %[[RHS:.*]]: vector<[4]xi32>) -> vector<[4]x[4]xi32> { - // CHECK: %[[RES:.*]] = vector.outerproduct %[[LHS]], %[[RHS]] : vector<[4]xi32>, vector<[4]xi32> - // CHECK: return %[[RES]] : vector<[4]x[4]xi32> - func.func @arith_to_outerproduct_scalable_i32(%lhs: vector<[4]xi32>, %rhs: vector<[4]xi32>) -> vector<[4]x[4]xi32> { - %lhsBcast = vector.broadcast %lhs : vector<[4]xi32> to vector<[4]x[4]xi32> - %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<[4]x[4]xi32> to vector<[4]x[4]xi32> - %rhsBcast = vector.broadcast %rhs : vector<[4]xi32> to vector<[4]x[4]xi32> - %mul = arith.muli %lhsT, %rhsBcast : vector<[4]x[4]xi32> - return %mul: vector<[4]x[4]xi32> - } +// CHECK-LABEL: func.func @arith_to_outerproduct_scalable_i32 +// CHECK-SAME: %[[LHS:.*]]: vector<[4]xi32>, +// CHECK-SAME: %[[RHS:.*]]: vector<[4]xi32>) -> vector<[4]x[4]xi32> { +// CHECK: %[[RES:.*]] = vector.outerproduct %[[LHS]], %[[RHS]] : vector<[4]xi32>, vector<[4]xi32> +// CHECK: return %[[RES]] : vector<[4]x[4]xi32> +func.func @arith_to_outerproduct_scalable_i32(%lhs: vector<[4]xi32>, %rhs: vector<[4]xi32>) -> vector<[4]x[4]xi32> { + %lhsBcast = vector.broadcast %lhs : vector<[4]xi32> to vector<[4]x[4]xi32> + %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<[4]x[4]xi32> to vector<[4]x[4]xi32> + %rhsBcast = vector.broadcast %rhs : vector<[4]xi32> to vector<[4]x[4]xi32> + %mul = arith.muli %lhsT, %rhsBcast : vector<[4]x[4]xi32> + return %mul: vector<[4]x[4]xi32> +} - // CHECK-LABEL: func.func @arith_to_outerproduct_trans_rhs_f32 - // CHECK-SAME: %[[LHS:.*]]: vector<16xf32>, - // CHECK-SAME: %[[RHS:.*]]: vector<8xf32>) -> vector<8x16xf32> { - // CHECK: %[[RES:.*]] = vector.outerproduct %[[RHS]], %[[LHS]] : vector<8xf32>, vector<16xf32> - // CHECK: return %[[RES]] : vector<8x16xf32> - func.func @arith_to_outerproduct_trans_rhs_f32(%lhs: vector<16xf32>, %rhs: vector<8xf32>) -> vector<8x16xf32> { - %rhsBcast = vector.broadcast %rhs : vector<8xf32> to vector<16x8xf32> - %rhsT = vector.transpose %rhsBcast, [1, 0] : vector<16x8xf32> to vector<8x16xf32> - %lhsBcast = vector.broadcast %lhs : vector<16xf32> to vector<8x16xf32> - %mul = arith.mulf %lhsBcast, %rhsT : vector<8x16xf32> - return %mul: vector<8x16xf32> - } +// CHECK-LABEL: func.func @arith_to_outerproduct_trans_rhs_f32 +// CHECK-SAME: %[[LHS:.*]]: vector<16xf32>, +// CHECK-SAME: %[[RHS:.*]]: vector<8xf32>) -> vector<8x16xf32> { +// CHECK: %[[RES:.*]] = vector.outerproduct %[[RHS]], %[[LHS]] : vector<8xf32>, vector<16xf32> +// CHECK: return %[[RES]] : vector<8x16xf32> +func.func @arith_to_outerproduct_trans_rhs_f32(%lhs: vector<16xf32>, %rhs: vector<8xf32>) -> vector<8x16xf32> { + %rhsBcast = vector.broadcast %rhs : vector<8xf32> to vector<16x8xf32> + %rhsT = vector.transpose %rhsBcast, [1, 0] : vector<16x8xf32> to vector<8x16xf32> + %lhsBcast = vector.broadcast %lhs : vector<16xf32> to vector<8x16xf32> + %mul = arith.mulf %lhsBcast, %rhsT : vector<8x16xf32> + return %mul: vector<8x16xf32> } module attributes {transform.with_named_sequence} { diff --git a/mlir/test/Examples/transform/ChH/full.mlir b/mlir/test/Examples/transform/ChH/full.mlir index 85dbf67023323..259475ebdbf49 100644 --- a/mlir/test/Examples/transform/ChH/full.mlir +++ b/mlir/test/Examples/transform/ChH/full.mlir @@ -1,6 +1,8 @@ -// RUN: mlir-opt %s --transform-interpreter="debug-payload-root-tag=payload" \ -// RUN: --test-transform-dialect-erase-schedule |\ -// RUN: mlir-opt -pass-pipeline='builtin.module(builtin.module(math-uplift-to-fma,convert-bufferization-to-memref,test-lower-to-llvm))' - |\ +// RUN: mlir-opt %s --transform-interpreter \ +// RUN: --test-transform-dialect-erase-schedule \ +// RUN: --math-uplift-to-fma \ +// RUN: --convert-bufferization-to-memref \ +// RUN: --test-lower-to-llvm |\ // RUN: FileCheck %s // Fixed-size tensor types to be used in convolution. @@ -17,7 +19,6 @@ // tensors annotated with attributes from the `bufferization` dialect. These // attributes hint the bufferization pass to assume buffers can be directly // used for these tensors without reshaping. -module @payload attributes { transform.target_tag = "payload" } { func.func @conv( %input: !tinput {bufferization.writable = false, bufferization.access = "read", @@ -83,7 +84,7 @@ func.func @conv( return %relued : !toutput } -} + // Module containing the transformation script to be applied. The attribute // is required to correctly verify the use of named (macro-like) sequences. module attributes { transform.with_named_sequence } {