|
| 1 | +//===-- OpDescriptor.h ------------------------------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// The LLVM Compiler Infrastructure |
| 4 | +// |
| 5 | +// This file is distributed under the University of Illinois Open Source |
| 6 | +// License. See LICENSE.TXT for details. |
| 7 | +// |
| 8 | +//===----------------------------------------------------------------------===// |
| 9 | +// |
| 10 | +// Provides the fuzzerop::Descriptor class and related tools for describing |
| 11 | +// operations an IR fuzzer can work with. |
| 12 | +// |
| 13 | +//===----------------------------------------------------------------------===// |
| 14 | + |
| 15 | +#ifndef LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
| 16 | +#define LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
| 17 | + |
| 18 | +#include "llvm/ADT/ArrayRef.h" |
| 19 | +#include "llvm/ADT/STLExtras.h" |
| 20 | +#include "llvm/ADT/SmallVector.h" |
| 21 | +#include "llvm/IR/Constants.h" |
| 22 | +#include "llvm/IR/DerivedTypes.h" |
| 23 | +#include "llvm/IR/Type.h" |
| 24 | +#include "llvm/IR/Value.h" |
| 25 | +#include <functional> |
| 26 | + |
| 27 | +namespace llvm { |
| 28 | +namespace fuzzerop { |
| 29 | + |
| 30 | +/// @{ |
| 31 | +/// Populate a small list of potentially interesting constants of a given type. |
| 32 | +void makeConstantsWithType(Type *T, std::vector<Constant *> &Cs); |
| 33 | +std::vector<Constant *> makeConstantsWithType(Type *T); |
| 34 | +/// @} |
| 35 | + |
| 36 | +/// A matcher/generator for finding suitable values for the next source in an |
| 37 | +/// operation's partially completed argument list. |
| 38 | +/// |
| 39 | +/// Given that we're building some operation X and may have already filled some |
| 40 | +/// subset of its operands, this predicate determines if some value New is |
| 41 | +/// suitable for the next operand or generates a set of values that are |
| 42 | +/// suitable. |
| 43 | +class SourcePred { |
| 44 | +public: |
| 45 | + /// Given a list of already selected operands, returns whether a given new |
| 46 | + /// operand is suitable for the next operand. |
| 47 | + using PredT = std::function<bool(ArrayRef<Value *> Cur, const Value *New)>; |
| 48 | + /// Given a list of already selected operands and a set of valid base types |
| 49 | + /// for a fuzzer, generates a list of constants that could be used for the |
| 50 | + /// next operand. |
| 51 | + using MakeT = std::function<std::vector<Constant *>( |
| 52 | + ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes)>; |
| 53 | + |
| 54 | +private: |
| 55 | + PredT Pred; |
| 56 | + MakeT Make; |
| 57 | + |
| 58 | +public: |
| 59 | + /// Create a fully general source predicate. |
| 60 | + SourcePred(PredT Pred, MakeT Make) : Pred(Pred), Make(Make) {} |
| 61 | + SourcePred(PredT Pred, NoneType) : Pred(Pred) { |
| 62 | + Make = [Pred](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) { |
| 63 | + // Default filter just calls Pred on each of the base types. |
| 64 | + std::vector<Constant *> Result; |
| 65 | + for (Type *T : BaseTypes) { |
| 66 | + Constant *V = UndefValue::get(T); |
| 67 | + if (Pred(Cur, V)) |
| 68 | + makeConstantsWithType(T, Result); |
| 69 | + } |
| 70 | + if (Result.empty()) |
| 71 | + report_fatal_error("Predicate does not match for base types"); |
| 72 | + return Result; |
| 73 | + }; |
| 74 | + } |
| 75 | + |
| 76 | + /// Returns true if \c New is compatible for the argument after \c Cur |
| 77 | + bool matches(ArrayRef<Value *> Cur, const Value *New) { |
| 78 | + return Pred(Cur, New); |
| 79 | + } |
| 80 | + |
| 81 | + /// Generates a list of potential values for the argument after \c Cur. |
| 82 | + std::vector<Constant *> generate(ArrayRef<Value *> Cur, |
| 83 | + ArrayRef<Type *> BaseTypes) { |
| 84 | + return Make(Cur, BaseTypes); |
| 85 | + } |
| 86 | +}; |
| 87 | + |
| 88 | +/// A description of some operation we can build while fuzzing IR. |
| 89 | +struct OpDescriptor { |
| 90 | + unsigned Weight; |
| 91 | + SmallVector<SourcePred, 2> SourcePreds; |
| 92 | + std::function<Value *(ArrayRef<Value *>, Instruction *)> BuilderFunc; |
| 93 | +}; |
| 94 | + |
| 95 | +static inline SourcePred onlyType(Type *Only) { |
| 96 | + auto Pred = [Only](ArrayRef<Value *>, const Value *V) { |
| 97 | + return V->getType() == Only; |
| 98 | + }; |
| 99 | + auto Make = [Only](ArrayRef<Value *>, ArrayRef<Type *>) { |
| 100 | + return makeConstantsWithType(Only); |
| 101 | + }; |
| 102 | + return {Pred, Make}; |
| 103 | +} |
| 104 | + |
| 105 | +static inline SourcePred anyType() { |
| 106 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 107 | + return !V->getType()->isVoidTy(); |
| 108 | + }; |
| 109 | + auto Make = None; |
| 110 | + return {Pred, Make}; |
| 111 | +} |
| 112 | + |
| 113 | +static inline SourcePred anyIntType() { |
| 114 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 115 | + return V->getType()->isIntegerTy(); |
| 116 | + }; |
| 117 | + auto Make = None; |
| 118 | + return {Pred, Make}; |
| 119 | +} |
| 120 | + |
| 121 | +static inline SourcePred anyFloatType() { |
| 122 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 123 | + return V->getType()->isFloatingPointTy(); |
| 124 | + }; |
| 125 | + auto Make = None; |
| 126 | + return {Pred, Make}; |
| 127 | +} |
| 128 | + |
| 129 | +static inline SourcePred anyPtrType() { |
| 130 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 131 | + return V->getType()->isPointerTy(); |
| 132 | + }; |
| 133 | + auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) { |
| 134 | + std::vector<Constant *> Result; |
| 135 | + // TODO: Should these point at something? |
| 136 | + for (Type *T : Ts) |
| 137 | + Result.push_back(UndefValue::get(PointerType::getUnqual(T))); |
| 138 | + return Result; |
| 139 | + }; |
| 140 | + return {Pred, Make}; |
| 141 | +} |
| 142 | + |
| 143 | +static inline SourcePred anyAggregateType() { |
| 144 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 145 | + return V->getType()->isAggregateType(); |
| 146 | + }; |
| 147 | + // TODO: For now we only find aggregates in BaseTypes. It might be better to |
| 148 | + // manufacture them out of the base types in some cases. |
| 149 | + auto Find = None; |
| 150 | + return {Pred, Find}; |
| 151 | +} |
| 152 | + |
| 153 | +static inline SourcePred anyVectorType() { |
| 154 | + auto Pred = [](ArrayRef<Value *>, const Value *V) { |
| 155 | + return V->getType()->isVectorTy(); |
| 156 | + }; |
| 157 | + // TODO: For now we only find vectors in BaseTypes. It might be better to |
| 158 | + // manufacture vectors out of the base types, but it's tricky to be sure |
| 159 | + // that's actually a reasonable type. |
| 160 | + auto Make = None; |
| 161 | + return {Pred, Make}; |
| 162 | +} |
| 163 | + |
| 164 | +/// Match values that have the same type as the first source. |
| 165 | +static inline SourcePred matchFirstType() { |
| 166 | + auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 167 | + assert(!Cur.empty() && "No first source yet"); |
| 168 | + return V->getType() == Cur[0]->getType(); |
| 169 | + }; |
| 170 | + auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
| 171 | + assert(!Cur.empty() && "No first source yet"); |
| 172 | + return makeConstantsWithType(Cur[0]->getType()); |
| 173 | + }; |
| 174 | + return {Pred, Make}; |
| 175 | +} |
| 176 | + |
| 177 | +/// Match values that have the first source's scalar type. |
| 178 | +static inline SourcePred matchScalarOfFirstType() { |
| 179 | + auto Pred = [](ArrayRef<Value *> Cur, const Value *V) { |
| 180 | + assert(!Cur.empty() && "No first source yet"); |
| 181 | + return V->getType() == Cur[0]->getType()->getScalarType(); |
| 182 | + }; |
| 183 | + auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) { |
| 184 | + assert(!Cur.empty() && "No first source yet"); |
| 185 | + return makeConstantsWithType(Cur[0]->getType()->getScalarType()); |
| 186 | + }; |
| 187 | + return {Pred, Make}; |
| 188 | +} |
| 189 | + |
| 190 | +} // end fuzzerop namespace |
| 191 | +} // end llvm namespace |
| 192 | + |
| 193 | +#endif // LLVM_FUZZMUTATE_OPDESCRIPTOR_H |
0 commit comments